K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
7 tháng 11 2016
Bài 2 nếu ai giải được thì làm ơn gửi cho mình cách giải nhé!!Mình cũng có bài này mà ko giải được
14 tháng 5 2023
Sửađề: cát tuyến ADE
a: Sửa đề: ABOC
góc OBA+góc OCA=90+90=180 độ
=>OBAC nội tiếp
b: Xet ΔABD và ΔAEB có
góc ABD=góc AEB
góc BAD chung
=>ΔABD đồng dạng với ΔAEB
=>AD*AE=AB^2=3*R^2
=>AD*2AD=3R^2
=>AD^2=3/2*R^2
=>\(AD=R\cdot\sqrt{\dfrac{3}{2}}\)
Sửa lại đề của bạn là:
Cho đường tròn tâm O đường kính AB=2R. Dây cung CD không đi qua tâm O sao cho góc COD=90 độ. CD cắt AB ở E (D nằm giữa E và C ) sao cho OE=2R . Tính EC và ED theo R.
Bài làm:
Kẻ \(OM\perp CE\)và \(BN\perp CE\). Khi đó
Do COD là tam giác vuông cân nên \(CD=R\sqrt{2}\)và \(OM=MD=\frac{R\sqrt{2}}{2}\)
Ta có EB = BO và BN // OM nên EN = MN
suy ra NB là đường trung bình của tam giác vuông EMO nên \(NB=\frac{OM}{2}=\frac{R\sqrt{2}}{4}\)
Xét tam giác vuông ENB có \(EN=\sqrt{EB^2-BN^2}=\sqrt{R^2-\frac{2R^2}{4^2}}=\frac{R\sqrt{14}}{4}\)
mà MN = EN suy ra
\(DN=MN-MD=\frac{R\sqrt{14}}{4}-\frac{R\sqrt{2}}{2}=\frac{R\sqrt{14}-2R\sqrt{2}}{4}\)
Vậy \(ED=EN+ND=\frac{R\sqrt{14}}{4}+\frac{R\sqrt{14}-2R\sqrt{2}}{4}=\frac{R\sqrt{14}-R\sqrt{2}}{2}\)
\(EC=ED+DC=\frac{R\sqrt{14}-R\sqrt{2}}{2}+R\sqrt{2}=\frac{R\sqrt{14}+R\sqrt{2}}{2}\)