K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2016

4] 
tg DEC ~ tg DCB 
=> EC/BC = DC/DB 
=> EC = BC.DC/DB 
=> AC.EC = AC.BC.DC/DB = 2S(ACB).DC/DB 
Cần c/m AF.CH = AC.EC 
<=> AF.CH = 2S(ACB).DC/DB 
<=> AE.DB = 2S(ACB).DC/CH (*) 
Mà 2S(ACB)/CH = AB 
=> (*) <=> AE.DB = AB.DC = AB.DA 
Mà AE.DB = 2S(ADB); AB.DA = 2S(ADB) 
Vậy: AF.CH = AC.EC 

5] 
Ta đi c/m KA=KD để suy ra KE là tiếp tuyến. 
AE kéo dài CH tại M 
=> AK/CM = KI/IC 
=> KD/CH = KI/IC 
=> AK/CM = KD/CH (*) 

DP cắt CH tại P; BC cắt AD tại J 
=> HP/AD = BP/BD = CP/DJ (**) 
Tam giác ACJ vuông tại C, AD=AD => DC là trung tuyến => AD=DJ 
Từ (**) => HP=PC 

Xét 2 tg vuông AMH và HBP, ta có ^AMH = ^HBP (cạnh tương ứng vuông góc) 
=> tg AMH ~ HBP 
=> MH/AH = HB/PH 
=> MH = AH.HB/PH = AH.HB/(CH/2) = 2AH.HB/CH (***) 
Do CH^2 = AH.HB => AH.HB/CH = CH 
Từ (***) => MH = 2CH => CM =CH 
Từ (*) => AK =KD 
=> KE là trung tuyến tg vuông ADE => ka=ke 
=> tg OKA = tg OKE (do OA=OE, OK chung; AK=KD) 
=> ^KEO = ^KAO = 90 
=> KE là tiếp tuyến của (O)

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0
Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
24 tháng 12 2018

O A B x y C C E F D I H K

a, Theo t/c tiếp tuyến của đường tròn

 EA = EC

 FC = FB

=>  EC + CF = EA + BF

=> EF  = AE + BF

b, Xét \(\Delta\)ABC có OA = OB = OC (bán kính)

=> \(\Delta\)ABC vuông tại C

=> AC \(\perp\)BC

Xét \(\Delta\)DAB vuông tại  A có AC là đường cao

=> \(AD^2=DC.DB\)(Hệ thức lượng)

c,Chưa ra, mai nghĩ ra thì giải cho ^^

Bài 1: Điểm C nằm giữa hai điểm A và B. Vẽ đường tròn tâm O, đường kính AB và đường tròn tâm O' đường kính BC. Vẽ tiếp tuyến chung của hai đường tròn tiếp xúc với đường tròn tâm O và tâm O' tại D và E. AD cắt BE tại Ma) tam giác MAB là tam giác j?b) chứng minh CDME là hình chữ nhật và MC là tiếp tuyến của 2 đường tròn tâm O và tâm O'c) Kẻ tia Ex vuông góc với EA và tia By vuông góc với...
Đọc tiếp

Bài 1: Điểm C nằm giữa hai điểm A và B. Vẽ đường tròn tâm O, đường kính AB và đường tròn tâm O' đường kính BC. Vẽ tiếp tuyến chung của hai đường tròn tiếp xúc với đường tròn tâm O và tâm O' tại D và E. AD cắt BE tại M
a) tam giác MAB là tam giác j?
b) chứng minh CDME là hình chữ nhật và MC là tiếp tuyến của 2 đường tròn tâm O và tâm O'
c) Kẻ tia Ex vuông góc với EA và tia By vuông góc với BA. Ex cắt By tại N. Chứng minh 3 điểm D,C.N thẳng hàng.
Bài 2: Cho (O) và (O') cắt nhau tại A và B. Tiếp tuyến tại A của (O) cắt (O') tại D. Tiếp tuyến tại A của (O') cắt (O) tại C. Chứng minh rằng:
a) tam giác ABC đồng dạng với tam giác DBA
b) (AC/AD)^2 ( AC trên AD tất cả mũ 2) = BC/BD( AC trên AD tất cả mũ 2 bằng BC/BD)
c) Gọi E là điểm đối xứng của A qua B. Chứng minh ACED là tứ giác nội tiếp.

1
27 tháng 4 2021

Ai giả câu c bài 2 đi ạ khó quá 

21 tháng 11 2018

các bạn giúp mình với ạ .mình cám ơn

4 tháng 1 2021

Góc HCF sao lại bằng góc FCA vậy mn ???

4 tháng 12 2017

A B O C E F D I H K M J

a) Theo tính chất hai tiếp tuyến cắt nhau, ta có AE = EC; BF = FC

Vậy nên AE + BF = EC + CF = EF

b) Xét tam giác vuông BAD có AC là đường cao nên áp dụng hệ thức lượng trong tam giác, ta có:

\(DA^2=DC.DB\)

c)  Ta thấy rằng \(\Delta DCA\sim\Delta DAB\Rightarrow\frac{DA}{DB}=\frac{CA}{AB}\)

Lại có AB = 2OB; AC = 2AH.

Vậy nên \(\frac{DA}{DB}=\frac{2.AH}{2.OB}=\frac{AH}{OB}\)

Ta cũng có \(\widehat{DAH}=\widehat{DBO}\) (Cùng phụ với góc \(\widehat{BCA}\) )

Nên \(\Delta DAH\sim\Delta DBO\Rightarrow\widehat{DHA}=\widehat{DOB}\)

Mà \(\widehat{DHA}=\widehat{IHK}\) nên \(\widehat{DOB}=\widehat{IHK}\)

Xét tứ giác HIOK có \(\widehat{DOB}=\widehat{IHK}\) nên HIOK là tứ giác nội tiếp. Vậy thì \(\widehat{HIK}=\widehat{HOK}\)

\(\widehat{HIK}+\widehat{HAK}=\widehat{HOK}+\widehat{HAK}=90^o\)

\(\Rightarrow\widehat{AKI}=90^o\Rightarrow IK\perp AB\)

d) Từ A kẻ AJ song song với BD cắt BF tại J.

Khi đó ta thấy ngay ADBJ là hình bình hành. Vậy thì DJ giao với AB tại trung điểm mỗi đường hay O là trung điểm của AB và DJ.

Vậy ta có D, O , J  thẳng hàng.

Xét tam giác AFJ có \(AB\perp FJ\)

\(FO\perp BC\) mà BC // AJ nên \(FO\perp AJ\)

Vậy thì O là trực tâm tam giác AFJ hay \(JO\perp AF\)  (1)

Xét tam giác AIO có \(IK\perp AO;OH\perp AI\Rightarrow\) M là trực tâm tam giác.

Vậy thì \(AM\perp IO\)   (2)

Từ (1) và (2) suy ra A, M , F thẳng hàng.