Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d, kéo dài BC cắt AM tại Q
\(\Delta ACQ\) vuông tại C có MA= MC (2 tiếp tuyến cắt nhau)
góc MAC = góc MCA
--> MAC + AQB=MCA+MCQ=90
-->AQB=MCQ-->MC=MQ--> MA=MQ
\(\Delta MAB\sim\Delta NHB\Rightarrow\frac{NH}{MA}=\frac{NB}{MB}\)
\(\Delta QMB\sim\Delta CNB\Rightarrow\frac{CN}{QM}=\frac{BN}{BM}\)
------>>>>........
a: góc CDH=1/2*sđ cung CH=90 độ
góc CEH=1/2*sđ cung CH=90 độ
góc ACB=1/2*180=90 độ
Vì góc CDH=góc CEH=góc DCE=90 độ
nên CDHE là hình chữ nhật
b: ΔCHA vuông tại H có HD là đường cao
nên CD*CA=CH^2
ΔCHB vuông tại H
mà HE là đường cao
nên CE*CB=CH^2=CD*CA
CDHE là hình chữ nhật
=>góc CDE=góc CHE=góc CBA
=>góc ADE+góc ABE=180 độ
=>ABED nội tiếp