Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác ABC nội tiếp đường tròn (O) đường kính BC
=> OA=OB=OC và O là trung điểm của BC
=> Tam giác ABC vuông tại A
=> góc BAC = 90 độ
b) DO tam giác HAK nội tiếp đường tròn (I)
Lại có góc HAK = 90 độ
=> HK là đường kính của (I)
=> HK đi qua I
=> H,I,K thẳng hàng
c) Đề bài ghi ko rõ
d) 3 điểm nào?
...........................................................................................................................................................................................................................................................................................................................................................................................................................................................GHJYTGJ
a) Gọi d là tiếp tuyến tại A của đường tròn (O) => d vuông góc OA => d vuông góc AB
Vì AB là đường kính của đường tròn (AB) nên d cũng là tiếp tuyến của (AB)
Vậy (O) và (AB) tiếp xúc nhau tại A (đpcm).
b) Gọi I là trung điểm đoạn AB => I là tâm của (AB) => ^ICA = ^IAC = ^OEA => IC // OE
Ta thấy OB = BI = IA = OA/3 => \(\frac{AI}{AO}=\frac{1}{3}\). Áp dụng ĐL Thales vào \(\Delta\)AEO có
\(\frac{AC}{AE}=\frac{AI}{AO}=\frac{1}{3}\) => AC = 1/3.AE (1)
Gọi OC,OD cắt đường tròn (O) cho trước lần lượt tại F,G. Khi đó DC // GF
Hay GF // AE. Mà GF và AE là các dây của đường tròn (O) nên (GE = (AF => ^EOG = ^AOF
Xét \(\Delta\)ODE và \(\Delta\)OCA: OD = OC, ^EOD = ^AOC (cmt), OE = OA => \(\Delta\)ODE = \(\Delta\)OCA (c.g.c)
=> ED = AC. Kết hợp với (1) suy ra AC = DE = AE/3 => AC = CD = DE (đpcm).
a, (O): góc BAC=90 độ (góc nt chắn nửa đường tròn).
(I): góc AEH=90(góc nt chắn nửa đường tròn). góc ADH=90(góc nt chắn nửa đường tròn) => tg AEHD là hcn(có 3 góc vuông)
b) (I): góc ADE=góc AHE( nt cùng chắn cung AE)
ta lại có:góc AHE=góc ABH( cùng phụ với góc BAH.) => ADE=ABH
=> tg BEDC nội tiếp (góc trong tại 1 đỉnh = góc ngoài tại đỉnh đối diện)
c, tg AEHD là hcn; AH cắt AD tại I => IA=IH=IE=ID
tam giác ADH: DI là trung tuyến
tam giác: AMH: MI là trung tuyến => D,M,I thẳng hàng. mà E,M,I thẳng hàng=> D,M,E thẳng hàng.
Nhớ L I K E nha
Gọi G là giao điểm của DE và CH. I là giao điểm của DE và OC. F là giao điểm của OC với (O)
Xét tam giác CGI và tam giác COH có:
\(\hept{\begin{cases}\widehat{HCO}chung\\\widehat{CIG}=\widehat{CHO}=90^0\end{cases}\Rightarrow\Delta CGI~\Delta COH\left(g-g\right)}\)
\(\Rightarrow\frac{CG}{CI}=\frac{CO}{CH}\)
\(\Rightarrow CG.CH=CO.CI\)
\(\Rightarrow2.CG.CH=2.CO.CI=CF.CI\)(1)
Áp dụng hệ thức lượng trong tam giác CEF vuông tại E có EI là đường cao ta có:
\(CF.CI=CE^2=CH^2\)(2)
Từ (1) và (2) \(\Rightarrow2.CG.CH=CH^2\)
\(\Rightarrow2CG=CH\)
\(\Rightarrow G\)là trung điểm của CH mà DE cắt CH tại G
\(\Rightarrow DE\)đi qua trung điểm của CH
Dễ ! Tick đi ! Mình làm cho !!!
oh my chuoi
em mới lớp 6