Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
ΔOBC cân tại O
mà OK là trung tuyến
nên OK vuông góc BC
Xét tứ giác CIOK có
góc CIO+góc CKO=180 độ
=>CIOK là tứ giác nội tiếp
Bài 3:
Xét tứ giác EAOM có
góc EAO+góc EMO=180 độ
=>EAOM làtứ giác nội tiếp
a: góc EAO+góc EMO=180 độ
=>EAOM nội tiếp
b: góc AMB=1/2*sđ cung AB=90 độ
Xét (O) co
EM,EA là tiếptuyến
=>EM=EA
mà OM=OA
nên OE là trung trực của AM
=>OE vuông góc AM tại P
Xét (O) có
FM,FB là tiếptuyến
=>FM=FB
=>OF là trung trực của MB
=>OF vuông góc MB tại Q
góc MPO=góc MQO=góc PMQ=90 độ
=>MPOQ là hình chữ nhật
Lười quá, chắc mình giải câu c thôi ha.
Vẽ \(OH\) vuông góc \(d\) tại \(H\). \(AB\) cắt \(OH\) tại \(L\). \(OM\) cắt \(AB\) tại \(T\)
.
CM được \(OL.OH=OT.OM=R^2\) nên \(L\) cố định. Vậy \(AB\) luôn qua \(L\) cố định.