Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AHMQ có
\(\widehat{AHM}\) và \(\widehat{AQM}\) là hai góc đối
\(\widehat{AHM}+\widehat{AQM}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AHMQ là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
nên A,H,M,Q cùng nằm trên một đường tròn(đpcm)
b) Ta có: AHMQ là tứ giác nội tiếp(cmt)
nên \(\widehat{QAH}+\widehat{QMH}=180^0\)(Định lí tứ giác nội tiếp)
\(\Leftrightarrow\widehat{QAB}+\widehat{QMN}=180^0\)
mà \(\widehat{QAB}+\widehat{NAB}=180^0\)(hai góc kề bù)
nên \(\widehat{QMN}=\widehat{NAB}\)(1)
Xét (O) có
\(\widehat{NAB}\) là góc nội tiếp chắn \(\stackrel\frown{NB}\)
\(\widehat{BMN}\) là góc nội tiếp chắn \(\stackrel\frown{NB}\)
Do đó: \(\widehat{NAB}=\widehat{BMN}\)(Hệ quả góc nội tiếp)(2)
Từ (1) và (2) suy ra \(\widehat{QMN}=\widehat{BMN}\)
mà tia MN nằm giữa hai tia MQ và MB
nên MN là tia phân giác của \(\widehat{QMB}\)(đpcm)
a, Xét tứ giác AKCH có: \(\widehat{AKC}+\widehat{AHC}=90+90=180\)=> tứ gác AKCH nội tiếp
b,Tứ giác AKCH nội tiếp => \(\widehat{HCK}=\widehat{HAD}\)(góc trong và góc ngoài đỉnh đối diện)
Mặt khác: \(\widehat{HAD}=\widehat{BCD}=\frac{1}{2}sđ\widebat{BD}\)
=> \(\widehat{BCD}=\widehat{ACD}\)=> CD là phân giác \(\widehat{KCB}\)
c, Tứ giác AKCH nội tiếp: => \(\widehat{CKE}=\widehat{CAH}\)
Mà: \(\widehat{CDB}=\widehat{CAH}=\frac{1}{2}sđ\widebat{BC}\)
=> \(\widehat{CKE}=\widehat{CDE}\)=> tứ giác CKDE nội tiếp
=> \(\widehat{CKD}+\widehat{CED}=180\Rightarrow\widehat{CED}=180-\widehat{CKD}=180-90=90\)
=> \(CE⊥BD\)(ĐPCM)
d, em xem lại xem có gõ sai đề không nhé
Câu d) Khi C di chuyển trên cung nhỏ̉ AB. Xác định vị trí C để CK.AD+CE.DB có giá trị lớn nhất.
Nhờ mọi người giải dùm e với.