Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) zì H là trung điểm của AB nên \(OH\perp AB\)hay \(\widehat{OHM}=90^0\)
theo tính chất của tiếp tuyến ta lại có \(OD\perp DM\left(hay\right)\widehat{ODM}=90^0\)
=> M,D,O,H cùng nằm trên 1đường tròn
b) Theo tính chất tiếp tuyến ta có
MC=MD=> tam giác MDC cân tại M
=> MI là 1 đương phân giác của CMD , MẶt khác I là điểm chính giữa cung nhỏ CD nên :
\(\widehat{DCI}=\frac{1}{2}sđ\widebat{DI}=\frac{1}{2}sđ\widebat{CI}=\widehat{MCI}\)
=> CI là phân giác của góc MCD .
zậy I là tâm đường tròn nội tiếp tam giác MCD
1: Xét (O) có
OH là một phần đường kính
AB là dây
H là trung điểm của AB
Do đó: OH⊥AB
Xét tứ giác MDOH có
\(\widehat{MDO}+\widehat{MHO}=180^0\)
Do đó: MDOH là tứ giác nội tiếp
b) Trong (O) có EF là dây cung không đi qua O và K là trung điểm EF
\(\Rightarrow OK\bot EF\Rightarrow\angle OKM=90=\angle ODM\Rightarrow OKDM\) nội tiếp
mà theo câu a) MCOD nội tiếp nên M,D,K,O,C cùng thuộc 1 đường tròn
\(\Rightarrow MDKC\) nội tiếp
\(\Rightarrow\angle MKD=\angle MCD=\angle MDC\) (\(\Delta MCD\) cân tại M) \(=\angle MKC\)
\(\Rightarrow KM\) là phân giác \(\angle DKC\)
câu c hình như bn nhầm đỉnh tứ giác thì phải
d) bn cm ED là phân giác góc AEB (giống câu a) rồi dùng t/c phân giác trog và ngoài của tg AEB nhé
Giải ntn ạ