Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAFC và ΔBEC có
CA=CB
góc CAF=góc CBE
AF=BE
=>ΔAFC=ΔBEC
b: góc FCA=góc ECB
góc ACB=90 độ
=>góc ACE+góc BCE=90 độ
=>góc FCA+góc ACE=90 độ
=>góc FCE=90 độ
mà góc CFE=1/2*sđ cung CB=45 độ
nên ΔCFE vuông cân tại C
3, ta có: góc MFA = \(\frac{1}{2}\).(sđ cung AM + sđ cung BQ) (góc có đỉnh nằm trong đường tròn )
và góc MPQ = \(\frac{1}{2}\).sđ cung MQ = \(\frac{1}{2}\).. (sđ cung MB + sđ cung BQ ) (góc nội tiếp)
mà sđ cung AM = sđ cung MB (do M là điểm chính giữa cung AB )
=> góc MFA = góc MPQ
=> góc ngoài MFA tại hai đỉnh có hai góc đối nhau bằng nhau thì tứ giác EFQP là tứ giác nội tiếp hay E,F,P,Q cùng thuộc 1 đường tròn (đpcm)