Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác SAOB có
\(\widehat{OAS}+\widehat{OBS}=180^0\)
nên SAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét ΔSAC và ΔSDA có
\(\widehat{SAC}=\widehat{SDA}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\)
\(\widehat{ASC}\) chung
Do đó: ΔSAC\(\sim\)ΔSDA(g-g)
Suy ra: \(\dfrac{SA}{SD}=\dfrac{SC}{SA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(SA^2=SC\cdot SD\)
a: Xét tứ giác SAOB có \(\widehat{SAO}+\widehat{SBO}=180^0\)
nên SAOB là tứ giác nội tiếp(1)
Xét tứ giác OISB có \(\widehat{OIS}+\widehat{OBS}=180^0\)
nên OISB là tứ giác nội tiếp(2)
Từ (1) và (2) suy ra S,A,I,O,B cùng thuộc một đường tròn
b: Xét ΔSAM và ΔSNA có
\(\widehat{SAM}=\widehat{SNA}\)
\(\widehat{NSA}\) chung
Do đó: ΔSAM\(\sim\)ΔSNA
SUy ra: SA/SN=SM/SA
hay \(SA^2=SM\cdot SN\)