Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy đường trong (O) có dây cung PQ vuông góc với đường kính MN
=> M là điểm chính giữa của cung PQ => MP=MQ => \(\Delta\)PMQ cân tại M => ^MPQ=^MQP.
Tứ giác PMQJ nội tiếp (O) => ^MJQ=^MPQ; ^MJP=^MQP. Mà ^MPQ=^MQP (cmt)
=> ^MJQ=^MJP => MJ là phân giác ^PJQ (đpcm).
b) Đường tròn (O) có MN là đường kính: J thuộc cung MN => ^MJN=900 hay ^HJN=900
Xét tứ giác HINJ: ^HJN=^HIN=900 => Tứ giác HINJ nội tiếp đường tròn (đpcm).
c) Tứ giác MJNQ nội tiếp đường tròn (O) => ^MJQ=^MNQ.
Dễ thấy ^MNQ=^MNP => ^MJQ=^MNP hay ^GJK=^KNG.
Xét tứ giác GKNJ: ^GJK=^KNG (cmt) => Tứ giác GKNJ nội tiếp đường tròn.
=> ^GKJ=^GNJ hay ^GKJ=^PNJ.
Mà tứ giác PJNQ nội tiếp (O) => ^PNJ=^PQJ nên ^GKJ=^PQJ.
Lại thấy: 2 góc ^GKJ nà ^PQJ nằm ở vị trí đồng vị => GK//PQ (đpcm).
a) Xét (O) có
ΔMJN nội tiếp đường tròn(M,J,N∈(O))
MN là đường kính(gt)
Do đó: ΔMJN vuông tại J(Định lí)
⇒\(\widehat{MJN}=90^0\)
⇔\(\widehat{HJN}=90^0\)
Xét tứ giác HJNI có
\(\widehat{HJN}\) và \(\widehat{HIN}\) là hai góc đối
\(\widehat{HJN}+\widehat{HIN}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: HJNI là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
⇔H,J,N,I cùng nằm trên một đường tròn
a, Cm tu giac NIHO noi tiep:
CM - goc HON bang 90 do
- goc HIN bang 90 do
=>goc HON + goc HIN =180 do
Ma HON va HIN la hai Goc doi => DPCM
b,Cm IP.MQ=IM.PH
Cm - goc IHP bang goc MQI (= goc INM)
-goc IPH bang goc IMQ
=> tam giac IPH dong dang voi tam giac IMQ theo truong hop g.g
=>IP/PH=IM/MQ (canh ti le tuong ung)
=>DPCM
a: góc ACB=1/2*sđ cung AB=90 độ
góc EIB+góc ECB=180 độ
=>EIBC nội tiếp
b: Sửa đề: AE*AC-AI*AB=0
Xét ΔAIE vuông tại I và ΔACB vuông tại C co
góc IAE chung
=>ΔAIE đồng dạng với ΔACB
=>AI/AC=AE/AB
=>AI*AB=AE*AC
=>AI*AB-AE*AC=0
a: góc AKB=1/2*180=90 độ
góc HCB+góc HKB=180 độ
=>BKHC nội tiếp
b: Xét ΔACH vuông tại C và ΔAKB vuông tại K có
góc CAH chug
=>ΔACH đồng dạng với ΔAKB
=>AC/AK=AH/AB
=>AK*AH=AC*AB=1/2R*2R=R^2