Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) gọi H là trung điểm của AO
ta có △ AOB vuông( AB là tiếp tuyến) mà BH là trung tuyến( AH= OH theo cách vẽ)
=> BH=AH=OH
Tương tự với △ ACO ta cũng có CH=AH=OH
=> AH=OH=BH=CH
=> 4 điểm A,B,O,C cùng thuộc đường tròn( H)
b)Ta có MI=MB( hai tiếp tuyến AB và MN cắt nhau tại M )
NI=NC ( hai tiếp tuyến MN và AC cắt nhau tại N )
Mà MN=NI+MI=NC+MB
Hay MB+NC=MN
a: góc KOA+góc BOA=90 độ
góc KAO+góc COA=90 độ
mà góc BOA=góc COA
nên góc KOA=góc KAO
=>ΔKAO cân tại K
b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2
nên góc BAO=30 độ
=>góc BOA=60 độ
Xét ΔOBI có OB=OI và góc BOI=60 độ
nên ΔOBI đều
=>OI=OB=1/2OA=R
=>I là trung điểm của OA
ΔKAO cân tại K
mà KI là trung tuyến
nên KI vuông góc với OI
=>KI là tiếp tuyến của (O)
a) Xét (O):
AB là tiếp tuyến; B là tiếp điểm (gt). \(\Rightarrow\widehat{ABO}=90^o.\)
AC là tiếp tuyến; C là tiếp điểm (gt). \(\Rightarrow\widehat{ACO}=90^o.\)
\(\Rightarrow\) 4 điểm A, B, O, C cùng thuộc một đường tròn đường kính AO.
b) Xét (O):
\(\widehat{ACD}=\widehat{AEC}\) (Góc tạo bởi tia tiếp tuyến và dây; góc nội tiếp cùng chắn \(\stackrel\frown{CD}\)).
Xét \(\Delta ACD\) và \(\Delta AEC:\)
\(\widehat{ACD}=\widehat{AEC}\left(cmt\right).\)
\(\widehat{CAD}chung.\)
\(\Rightarrow\Delta ACD=\Delta AEC\left(g-g\right).\)
\(\Rightarrow\dfrac{AC}{AE}=\dfrac{AD}{AC}.\\ \Rightarrow AC^2=AD.AE.\)
a) Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)
Ta có: OB=OC(=R)
nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AB=AC(cmt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay \(OA\perp BC\)(đpcm)
b) Xét tứ giác ABOC có
\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối
\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
nên A,B,O,C cùng thuộc một đường tròn(đpcm)
Câu c.
Gọi K là trung điểm của BH
Chỉ ra K là trực tâm của tam giác BMI
Chứng minh MK//EI
Chứng minh M là trung điểm của BE (t.c đường trung bình)
Xét tam giác OKB có:
OI2=IK x IB
mà IB=IC (OI là đường trung trực)
=>OI2=IK x IC (1)
Xét tam giác OAB có:
BI2=OI x IA (2)
Xét tam giác vuông OBI có:
OB2=BI2+OI2=R (3)
Từ (1) và (2) và (3) =>IK x IC+OI x IA=OB2=R2 (CMX)