K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có 

OH là một phần đường kính

BC là dây

OH⊥BC tại H

Do đó:H là trung điểm của BC

Xét ΔABC có 

AH là đường cao

AH là đường trung tuyến

Do đó: ΔABC cân tại A

Xét ΔOBA và ΔOCA có 

OB=OC

BA=CA

OA chung

Do đó: ΔOBA=ΔOCA

Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)

hay AC là tiếp tuyến

b: Xét ΔOBA vuông tại B có

\(\sin BAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)

=>\(\widehat{BAO}=30^0\)

hay \(\widehat{BAC}=60^0\)

mà ΔABC cân tại A

nên ΔABC đều

20 tháng 12 2018

O A B H C Q D E

a, Vì \(\hept{\begin{cases}OB=OC\\OA\perp BC\end{cases}}\)

=> OA là đường trung trực BC

Mà OA cắt BC tại H

=> H là trung điểm BC

b, Vì AB là tiếp tuyến (O)

=> \(\widehat{ABO}=90^o\) 

Do OA là trung trực của BC

=> AB = AC
Xét \(\Delta\)ABO và \(\Delta\)ACO có :

AB = AC (cmt)

OB = OC (=R)

AO chung

=> \(\Delta ABO=\Delta ACO\left(c.c.c\right)\)

\(\Rightarrow\widehat{ACO}=\widehat{ABO}=90^o\)

\(\Rightarrow AC\perp CO\)

=> AC là tiếp tuyến (O) 

c, Xét tam giác OBA vuông tại B có
\(sin\widehat{BAO}=\frac{BO}{OA}=\frac{R}{2R}=\frac{1}{2}\)

\(\Rightarrow\widehat{BAO}=30^o\)

Vì AB , AC là 2 tiếp tuyến (O)

=> AO là p.g góc BAC

\(\Rightarrow\widehat{BAC}=2\widehat{BAO}=2.30^o=60^o\)
Vì AB = AC (Cmt)

=> \(\Delta\)ABC cân tại A

Mà ^BAC = 60o

=> \(\Delta\)ABC đều

Còn câu d, mình chưa nghĩ ra :(

b: \(AB=3\sqrt{3}\left(cm\right)\)

Xét ΔOAB vuông tại B có

\(\sin\widehat{AOB}=\dfrac{AB}{AO}=\dfrac{3\sqrt{3}}{6}=\dfrac{\sqrt{3}}{2}\)

hay \(\widehat{AOB}=60^0\)

2 tháng 1 2022

giải chi tiết đc ko ạ

 

24 tháng 10 2017

mk ko bt 123

24 tháng 10 2017

123 làm được rồi help mình câu 4