K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
4 tháng 4 2016

bạn tự vẽ hình nha!!!!!!!!!!

a) xét đg tròn (o) có: góc AIB = 90 độ ( góc nt chắn nửa đg tròn) =>  góc KIB =90 độ

có góc MHB = 90 độ( MN vuông góc vs AB) => goc KHB = 90 độ

xét tg BHKI ta có: góc KHB = 90 độ ( cmt) 

                           góc KIB = 90 độ (cmt)    

==> góc KHB + góc KIB = 90 + 90 = 180 độ           

mà 2 góc KHB và góc KIB ở vị trí đối nhau ==> tg BHKI nt( tổng 2 góc đối = 180 độ)

b)  từ tg BHKI nt (cma) => góc CKI = góc IBH ( góc ngoài tại đỉnh K = góc trong của đỉnh đối diện B)

                                  => góc CKI = góc CBH ( I thuộc CB)

     xét tam giác CIK và tam giác CHB ta có: góc C chung

                                                                  góc CKI = góc CBH ( ctm)

                     ==> tam giác CIK đồng dạng vs tam giác CHB (g.g)

              => \(\frac{CI}{CK}=\frac{CH}{CB}\)( tỉ số đồng dạng)

           ==> CI . CB= CK. CH ( đpcm)