Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét (O) có
ac là dây
e là điểm chính giữa cung ac
=>OE vuông góc AC=> EHC = 90(1)
Có AEB là góc nội tiếp chắn cung AB
=> AEB =90
Mà KC // EB
=>EK vuông góc KC=>EKC=90(2)
Từ (1)(2)=>EKC+EHC=180
Mà 2 góc nằm ở vị trí đối nhau của tứ giác CHEK
=>tứ giác CHEK nội tiếp(đpcm)
b)Gọi giao điểm của KH với AB là I
Có tứ giác CHEK nội tiếp (câu a)
=>EKH=ECH(3)
Có tứ giác AECB nội tiếp
=>ECA=EBA(4)
Từ (3)(4)=>EKH=EBA
Xét 2 tam giác AKI và ABE có
A:chung
AKI=ABE(cmt)
=>AKI\(\sim\)ABE
=>AIK=AEB=90
=>KH\(\perp\)AB(đpcm)
1: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
2: ΔOAB cân tại O
mà OM là đường cao
nên M là trung điểm của AB
ΔOAC cân tại O
mà ON là đường cao
nên N là trung điểm của AC
=>NM là đừog trung bình
=>MN//BC
=>MN//AE
=>AMNE là hình thang cân
=>AM=EN; AN=EM
ΔAHB vuông tại H có HM là trung tuyến
nên HM=AB/2=MA=MB
ΔHAC vuông tại H có HN là trung tuyến
nên HN=AN=CN=AC/2
=>HM=EN; HN=EM
=>HMEN là hình bbình hành
=>K làtrung điểm của MN
=>IK vuông góc MN
=>IK vuông góc BC
3: goc MDE+gó MDH=180 độ
=>góc MDE=góc MBH
=>BMDH nội tiếp
=>góc MDB=góc MHB=góc MBH
=>góc MDB=góc MDE
=>DM là phân giác của góc BDE
Gợi ý
c) JCIM là hình vuông: 3 góc = 90o = 90o, CJ=CI; CJ=CI do KB=AE