K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2018

Có Góc AEB và góc AFB bằng 90 vì cùng chắn AB mà AB là đường kính, chắn nửa đường tròn ý. 
Mà Góc EAF bằng góc AFB vì cùng chắn cung EB 
Suy ra 3 góc bằng nhau theo tính chất bắc cầu.( Cùng bằng 90 ) 
Suy ra đây là hình chữ nhật( Theo định nghĩa.) 
b) Có góc AEF= góc FBA( cùng chắn cung AF) 
Có FKB+ góc FBK= 90 ( KFB= 90) (cmt) 
mà FBE+ FBK=90 
suy ra FKB= AEF mà AEF+ FEH= 180 
suy ra FKB+ FEH= 180 
suy ra EFKH là tứ giác nội tiếp. 
c) Có FBA= FAM ( cùng + Vs AFB = 90)( còn tại sao bạn tự nhìn mình viết tắt thôi) 
mà FBA= BKF( cùng phụ vs FBK) 
suy ra KAM= AKM 
suy ra AMK là tam giác cân tại đỉnh M 
suy ra MA= MK 
tương tự bên kia có MA= MH 
suy ra MA= MH= MK 
suy ra MA là trung tuyến. 

Bài 1:Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:a) Góc AHN = ACBb) Tứ giác BMNC nội tiếp.c) Điểm I là trực tâm tam giác APQ.Bài 2:Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là...
Đọc tiếp

Bài 1:

Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:

a) Góc AHN = ACB

b) Tứ giác BMNC nội tiếp.

c) Điểm I là trực tâm tam giác APQ.

Bài 2:

Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh:

a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó.

b) KN là tiếp tuyến của đường tròn (O; R).

c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định.

 

0
25 tháng 9 2018

Ai làm hộ mình với