Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(OH=x\Rightarrow HD=\sqrt{R^2-x^2}\)
\(S_{ODH}=\frac{1}{2}.OH.HD=\frac{1}{2}x.\sqrt{R^2-x^2}\le\frac{1}{2}.\frac{x^2+\left(R^2-x^2\right)}{2}=\frac{R^2}{4}\)
Vậy \(maxS_{ODH}=\frac{R^2}{4}\) khi \(x=\sqrt{R^2-x^2}\Rightarrow x=\frac{R}{\sqrt{2}}\Rightarrow OH=\frac{OA}{\sqrt{2}}\)
Câu 4:
Ta có \(C_{OHD}=OD+OH+DH=R+OH+DH\)
Áp dụng BĐT \(\left(OH+DH\right)^2\le2\left(OH^2+DH^2\right)=2OD^2\)
\(\Rightarrow OH+DH\le\sqrt{2}.OD=R\sqrt{2}\)
\(\Rightarrow C_{OHD}\le R+R\sqrt{2}=R\left(1+\sqrt{2}\right)\)
Dấu "=" xảy ra khi và chỉ khi
\(OH=DH\Rightarrow2OH=R\sqrt{2}\Rightarrow OH=\frac{R\sqrt{2}}{2}\)
Vậy H nằm trên vị trí sao cho \(OH=\frac{R\sqrt{2}}{2}\) thì \(C_{OHD}\) lớn nhất
a, HS tự chứng minh
b, Chứng minh ∆NMC:∆NDA và ∆NME:∆NHA
c, Chứng minh ∆ANB có E là trực tâm => AE ⊥ BN mà có AK ⊥ BN nên có ĐPCM
Chứng minh tứ giác EKBH nội tiếp, từ đó có A K F ^ = A B M ^
d, Lấy P và G lần lượt là trung điểm của AC và OP
Chứng minh I thuộc đường tròn (G, GA)
bài náy giống bài của mik quá bn ơi