K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay ΔAMB cân tại M

hay \(\widehat{AMB}=60^0\)

nên ΔAMB đều

b: Xét (O) có 

NA là tiếp tuyến

NC là tiếp tuyến

Do đó: ON là tia phân giác của góc AOC(1)

Xét (O) có

QC là tiếp tuyến

QB là tiếp tuyến

Do đó: OQ là tia phân giác của góc NOB(2)

Từ (1) và (2) suy ra \(\widehat{NOQ}=\dfrac{1}{2}\cdot120^0=60^0\)

16 tháng 1 2022

Còn câu c thì sao ạ

15 tháng 1 2022

Giải thích các bước giải:

MO là t.p.g. của AMBˆAMB^

⇒AMOˆ=BMOˆ=AMBˆ2=450⇒AMO^=BMO^=AMB^2=450

⇒ΔAMO−và−ΔBMO⇒ΔAMO−và−ΔBMO vuông cân

=> OA = AM = MB = BO

=> OAMB là h.thoi có AMBˆ=900AMB^=900

=> OAMB là h.v.

b)

PMPQ=MP+MQ+PQPMPQ=MP+MQ+PQ

=(MP+PC)+(MQ+QC)=(MP+PC)+(MQ+QC)

=(MP+PA)+(MQ+QB)=(MP+PA)+(MQ+QB)

=MA+MB=MA+MB

=2OA=2OA

=2R=2R

c)

OP−là−t.p.g.−của−AOCˆOP−là−t.p.g.−của−AOC^

⇒COPˆ=12AOCˆ⇒COP^=12AOC^ (1)

OQ−là−t.p.g.−của−BOCˆOQ−là−t.p.g.−của−BOC^

⇒COQˆ=12BOCˆ⇒COQ^=12BOC^ (2)

Cộng theo vế của (1) và (2), ta có:

COPˆ+COQˆ=12(AOCˆ+BOCˆ)=12AOBˆCOP^+COQ^=12(AOC^+BOC^)=12AOB^

⇒POQˆ=450

Giải thích các bước giải:

MO là t.p.g. của AMBˆAMB^

⇒AMOˆ=BMOˆ=AMBˆ2=450⇒AMO^=BMO^=AMB^2=450

⇒ΔAMO−và−ΔBMO⇒ΔAMO−và−ΔBMO vuông cân

=> OA = AM = MB = BO

=> OAMB là h.thoi có AMBˆ=900AMB^=900

=> OAMB là h.v.

b)

PMPQ=MP+MQ+PQPMPQ=MP+MQ+PQ

=(MP+PC)+(MQ+QC)=(MP+PC)+(MQ+QC)

=(MP+PA)+(MQ+QB)=(MP+PA)+(MQ+QB)

=MA+MB=MA+MB

=2OA=2OA

=2R=2R

c)

OP−là−t.p.g.−của−AOCˆOP−là−t.p.g.−của−AOC^

⇒COPˆ=12AOCˆ⇒COP^=12AOC^ (1)

OQ−là−t.p.g.−của−BOCˆOQ−là−t.p.g.−của−BOC^

⇒COQˆ=12BOCˆ⇒COQ^=12BOC^ (2)

Cộng theo vế của (1) và (2), ta có:

COPˆ+COQˆ=12(AOCˆ+BOCˆ)=12AOBˆCOP^+COQ^=12(AOC^+BOC^)=12AOB^

⇒POQˆ=450vv

30 tháng 3 2022

hi

love

18 tháng 11 2015

phan hong phuc dễ thì làm hộ nó đi hãy chứng tỏ là một đàn ông chính thực đối với bạn thì dễ đối với nó thì khó thế thì hãy làm đi nếu bài dễ thế này nó ra làm gì đố vui chắc

21 tháng 12 2015

CHTT nha bạn !

Bài 1: 

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay ΔMAB cân tại M

mà \(\widehat{AMB}=60^0\)

nên ΔMBA đều

b: Xét ΔAOM vuông tại A có 

\(AM=OA\cdot\tan30^0\)

nên \(AM=5\sqrt{3}\left(cm\right)\)

\(C_{AMB}=3\cdot AM=15\sqrt{3}\left(cm\right)\)

c: Ta có: MA=MB

nên M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

hay MO⊥AB(1)

Xét (O) có

ΔABC nội tiếp

AC là đường kính

DO đó: ΔABC vuông tại B

Suy ra: AB⊥BC(2)

Từ (1) và (2) suy ra OM//BC

hay BMOC là hình thang

18 tháng 11 2016

c

Gọi H là giao điểm của AB và OM

a, Xét Δv MAO và ΔvMBO

Có MO chung

AO=OB(=bk)

=> ΔvMAO= ΔMBO (ch-cgv)

=> MA=MB

Trong ΔAMB

Có MA=MB(cmt)

=> ΔAMB cân tại M

lại có góc AMB=60 độ

=> ΔAMB là Δ đều

b, Ta có: góc AMO=góc BMO ( ΔvMAO= ΔvMBO)

mà góc AMO+ góc BMO= góc AMB=60 độ

=> góc AMO=\(\frac{1}{2}.60=30^0\)

Áp dụng tỉ số lượng giác

Ta có : tan góc AMO=\(\frac{AO}{AM}\)

tan30=\(\frac{5}{AM}\)

=>AM=\(\frac{5}{tan30}=5\sqrt{3}\)

Chu vi ΔAMB= AM.3=\(5\sqrt{3}.3=15\sqrt{3}\)

c, Ta có OA=OB (=bk)

=> O thuộc đường trung trực AB(1)

MA=MB(cmt)

=> M thuộc đường trung trực AB (2)

Từ (1)(2)=> OM là cả đường trung trực

=> MO vuông góc AB (*)

Ta có: OA=OB=OC(=bk)

=> OB=\(\frac{1}{2}AC\)

mà OB là đường trung tuyến

=> Δ ABC vuông tại B

=> AB vuông góc BC(**)

Từ (*)(**)=> MO//BC

=> BMOC là hình thang

18 tháng 11 2016

Bài 2:

a,

Ta có : góc AQM=90 độ ( MQ vuông góc xy)

góc APM =90 độ ( MP vuông góc AB)

góc QAP=90độ ( xy vuông góc OA)

=> QMPA là hình chữ nhật

b, Trong hình chữ nhật QMPA:

Có : I là trung điểm của đường chéo thứ nhất QP

-> I cũng là trung điểm của đường chéo thứ 2 AM

=> IA=IM

=> OI vuông góc AM tại I ( đường kính đi qua trung điểm => vuông góc ( đ/Lý 3)