K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

a) zì H là trung điểm của AB nên \(OH\perp AB\)hay \(\widehat{OHM}=90^0\)

theo tính chất của tiếp tuyến ta lại có \(OD\perp DM\left(hay\right)\widehat{ODM}=90^0\)

=> M,D,O,H cùng nằm trên 1đường tròn

b) Theo tính chất tiếp tuyến ta có

MC=MD=> tam giác MDC cân tại M

=> MI là 1 đương phân giác của CMD , MẶt khác I là điểm chính giữa cung nhỏ CD nên :

\(\widehat{DCI}=\frac{1}{2}sđ\widebat{DI}=\frac{1}{2}sđ\widebat{CI}=\widehat{MCI}\)

=> CI là phân giác của góc MCD . 

zậy I là tâm  đường tròn nội tiếp tam giác MCD

5 tháng 2 2021

O I B A M C D E F K (d)

a) Xét đường tròn (O; R) có I là trung điểm của dây AB

=> OI ⊥ AB (liên hệ giữa đường kính và dây cung)

=> ΔMIO vuông tại I => I, M, O cùng thuộc đường tròn đường kính OM

ΔMCO vuông tại C => C, M, O cùng thuộc đương tròn đường kính OM

ΔMDO vuông tại D => D, M, O cùng thuộc đường tròn đường kính OM

=> I, M, O, C, D cùng thuộc đường tròn đường kính OM

b) Xét ΔKOD và ΔKMI có: \(\widehat{KDO}=\widehat{KIM}\) (=90o)

                                           \(\widehat{OKM}\) chung

=> ΔKOD ~ ΔKMI (g.g) => \(\dfrac{KO}{KM}=\dfrac{KD}{KI}\) => KO.KI = KD.KM

c) Xét đường tròn (O; R), tiếp tuyến MC, MD => MO là phân giác \(\widehat{CMD}\); MD = MC

Lại có OC = OD = R => OM là trung trực của CD hay OM ⊥ CD.

Mà CD // EF => OM ⊥ EF. Lại có MO là phân giác \(\widehat{CMD}\) 

=> \(\widehat{CMO}=\widehat{DMO}\) => ΔEMO = ΔFMO (g.c.g)

=> SEMO = SFMO =\(\dfrac{1}{2}\)SEMF

Để SEMF nhỏ nhất thì SEMO nhỏ nhất

=> \(\dfrac{1}{2}\)EM.OC = \(\dfrac{1}{2}\).R.EM nhỏ nhất => EM nhỏ nhất (do R cố định)

Ta có: EM = EC + CM ≥ 2\(\sqrt{EC.CM}\)=2R (BĐT Cô-si)

Dấu "=" xảy ra ⇔ EC = CM => OC = CE = CM (t/c đường trung tuyến trong tam giác vuông) => ΔCMO vuông cân tại C => OM = OC\(\sqrt{2}\) =R\(\sqrt{2}\)

Vậy để SEMF nhỏ nhất thì M là giao điểm của (d) và (O; R\(\sqrt{2}\))

1: ΔOAB cân tại O

mà OI là trung tuyến

nên OI vuông góc AB

góc OIM=góc OCM=góc ODM=90 độ

=>O,I,M,D,C cùng thuộc đường tròn đường kính OM

góc DIM=góc MOD

góc CIM=góc COM

mà góc COM=góc DOM

nên góc DIM=góc CIM

=>IM là phân giác của góc CID

19 tháng 12 2017

Câu hỏi của Mafia - Toán lớp 9 - Học toán với OnlineMath

Em có thể tham khảo tại đây nhé.

27 tháng 3 2020

sai bét tè lè nhé lún