Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nha e
a) Xét (O) có EF là dây cung, I là trung điểm của EF
=> OI vuông góc với EF (tính chất đường kính và dây)
=> \(\widehat{OIA}=90^o\)
Lại có : (O) có AB là tiếp tuyến tại B
=> AB vuông góc với OB (tc tiếp tuyến)
=> \(\widehat{ABO}=90^o\)
Xét tứ giác ABOI có \(\widehat{ABO}+\widehat{OIA}=90+90=180^o\) mà 2 góc này là 2 góc đối của tứ giác
=> tứ giác ABOI nt đường tròn (ĐPCM)
b) ta có tứ giác ABOI nt
=> \(\widehat{OAI}=\widehat{OBI}\)(2 góc nt cùng chắn cung OI)
mà \(\widehat{OAI}=\widehat{DIF}\)(2 góc so le trong, AO//FK)
=> \(\widehat{KBI}=\widehat{IFK}\)
Xét tứ giác BIKF có \(\widehat{KBI}=\widehat{IFK}\)
mà 2 góc trên là góc nội tiếp cùng chằn cung CI
=> tứ giác BIKF nt hay 4 điểm B,I,K,F cùng thuộc 1 đg tròn
chúc e học tốt
a) Ta có ABAB và ACAC là tiếp tuyến tại AA và BB của (O)(O)
⇒AB⊥OB⇒AB⊥OB và AC⊥OCAC⊥OC
Xét AOB và ΔAOCAOB và ΔAOC có:
OB=OC(=R)OB=OC(=R)
ˆABO=ˆACO=90oABO^=ACO^=90o
OAOA chung
⇒ΔAOB=ΔAOC⇒ΔAOB=ΔAOC (ch-cgv)
⇒AB=AC⇒AB=AC và có thêm OB=OC⇒AOOB=OC⇒AO là đường trung trực của BCBC
Mà H là trung điểm của BC
⇒A,H,O⇒A,H,O thẳng hàng
Tứ giác ABOCABOC có ˆABO+ˆACO=90o+90o=180oABO^+ACO^=90o+90o=180o
⇒A,B,C,O⇒A,B,C,O cùng thuộc đường tròn đường kính OAOA.