Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
=>ΔABC cân tại A
mà OB=OC
nên OA là trung trực của BC
b: ΔOEF cân tại O
mà OG là trung tuyến
nên OG vuông góc với EF
Xét ΔAGO vuông tại G và ΔHDO vuông tại D có
góc AOG chung
Do đó: ΔAGO đồng dạng với ΔHDO
c: ΔAGO đồng dạng vơi ΔHDO
=>OA/OH=OG/OD
=>OA*OD=OH*OG
=>OH*OG=OE^2
=>ΔHEO vuông tại E
=>HE là tiếp tuyên của (O)
a, A,H,O thẳng hàng vì AH,AO cùng vuông góc với BC
HS tự chứng minh A,B,C,O cùng thuộc đường tròn đường kính OA
b, Ta có K D C ^ = A O D ^ (cùng phụ với góc O B C ^ )
=> ∆KDC:∆COA (g.g) => AC.CD = CK.AO
c, Ta có: M B A ^ = 90 0 - O B M ^ và M B C ^ = 90 0 - O M B ^
Mà O M B ^ = O B M ^ (∆OBM cân) => M B A ^ = M B C ^
=> MB là phân giác A B C ^ . Mặt khác AM là phân giác B A C ^
Từ đó suy ra M là tâm đường tròn nội tiếp tam giác ABC
d, Kẻ CD ∩ AC = P. Chứng minh ∆ACP cân tại A
=> CA = AB = AP => A là trung điểm CK
câu c thì cơ bản là tui chứng minh hai tam giác bằng nhau (c-c-c), xong rồi tui suy ra hai góc bằng nhau