Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, HS tự chứng minh
b, Chứng minh ∆NMC:∆NDA và ∆NME:∆NHA
c, Chứng minh ∆ANB có E là trực tâm => AE ⊥ BN mà có AK ⊥ BN nên có ĐPCM
Chứng minh tứ giác EKBH nội tiếp, từ đó có A K F ^ = A B M ^
d, Lấy P và G lần lượt là trung điểm của AC và OP
Chứng minh I thuộc đường tròn (G, GA)
a, Chú ý: K M B ^ = 90 0 và K E B ^ = 90 0 => ĐPCM
b, ∆ABE:∆AKM (g.g)
=> A E A M = A B A K
=> AE.AK = AB.AM = 3 R 2 không đổi
c, ∆OBC đều
=> B O C ⏜ = 60 0 => S = πR 2 6
a, Tứ giác BIHK nội tiếp (tổng hai góc đối bằng 180 0 )
b, Chứng minh AH.AK = AI.AB = 1 2 R.2R = R 2 => ĐPCM
c, MCND là hình chữ nhật => MN, AB, CD đồng quy tại I là trung điểm của CD
d, Tam giác OCA đều => A B C ^ = 30 0 ; M C D ^ = 60 0
Tính được CD = 2CI = 2 . 25 2 = 25cm; CM = 25 2 cm, MD = 25 3 2 cm, Sxq = 2.π.CM.MD = 625 3 2 πcm 2