K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: HA = HB (gt)

Suy ra : OH ⊥ AB (đường kính dây cung)

Lại có : KC = KD (gt)

Suy ra : OK ⊥ CD (đường kính dây cung)

Mà AB > CD (gt)

Nên OK > OH (dây lớn hơn gần tâm hơn)

Áp dụng định lí Pitago vào tam giác vuông OHM ta có :

O M 2 = O H 2 + H M 2

Suy ra :  H M 2 = O M 2 - O H 2  (1)

Áp dụng định lí Pitago vào tam giác vuông OKM ta có:

O M 2 = O K 2 + K M 2

Suy ra:  K M 2 = O M 2 - O K 2  (2)

Mà OH < OK (cmt) (3)

Từ (1), (2) và (3) suy ra: H M 2 > K M 2  hay HM > KM

12 tháng 11 2017

Bài tập 13 trang 106 SGK Toán 9 Tập 1 - H7.net

bài 13

Câu a: Ta có:

AH=HBOHABAH=HB⇒OH⊥AB

KC=KDOKCDKC=KD⇒OK⊥CD

Lại có:

AB=CDOH=OKAB=CD⇒OH=OK

ΔHOE=ΔKOE(ch.cgv)⇒ΔHOE=ΔKOE(ch.cgv)

EH=EK(1)⇒EH=EK(1)

Câu b: Ta lại có:

AB=CDAB2=CD2AH=CK(2)AB=CD⇔AB2=CD2⇔AH=CK(2)

Từ (1) và (2):

EH+HA=EK+KCEA=EC

2 tháng 8 2020

A B C D M K O H

a. Ta có: HA = HB ( gt )

Suy ra : \(OH\perp AB\) ( đường kính dây cung )

Lại có : KC = KD ( gt )

Suy ra : \(OK\perp CD\)( đường kính dây cung )

Mà AB > CD ( gt )

Nên OK > OH ( dây lớn hơn gần tâm hơn )

Áp dụng định lí Pitago vào tam giác vuông OHM ta có :

OM2 = OH2 + HM2

Suy ra : HM2 = OM2 – OH2 (1)

Áp dụng định lí Pitago vào tam giác vuông OKM ta có:

OM2 = OK2 + KM2

Suy ra: KM2 = OM2 – OK2 (2)

Mà OH < OK ( cmt ) (3)

Từ (1) (2) và (3) suy ra: HM2 > KM2 hay HM > KM

23 tháng 6 2017

Liên hệ giữa dây và khoảng cách từ tâm tới dây

25 tháng 8 2020

C A D B M K H O

a. Ta có: HA = HB (gt)

Suy ra : \(OH\perp AB\) (đường kính dây cung)

Lại có : KC = KD (gt)

Suy ra : \(OK\perp CD\) (đường kính dây cung)

Mà AB > CD (gt)

Nên OK > OH (dây lớn hơn gần tâm hơn)

Áp dụng định lí Pitago vào tam giác vuông OHM ta có :

OM2 = OH2 + HM2

Suy ra : HM2 = OM2 – OH2 (1)

Áp dụng định lí Pitago vào tam giác vuông OKM ta có:

OM2 = OK2 + KM2

Suy ra: KM2 = OM2 – OK2 (2)

Mà OH < OK (cmt) (3)

Từ (1), (2) và (3) suy ra: HM2 > KM2 hay HM > KM

1 tháng 9 2018

Đáp án là A

21 tháng 6 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Nối OE ta có: AB = CD

=> OH = OK (Định lí 3)

Hai tam giác vuông OEH và OEK có:

    OE là cạnh chung

    OH = OK

=> ΔOEH = ΔOEK (cạnh huyền, cạnh góc vuông)

=> EH = EK         (1). (đpcm)