Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔOAC có OA=OC và OA^2+OC^2=AC^2
nên ΔOAC vuôg cân tại O
b: \(BC=\sqrt{AB^2-AC^2}=\sqrt{4R^2-2R^2}=R\sqrt{2}\)
c: ΔOAC vuông cân tại O
=>góc BAC=45 độ
a: ΔOAC cântại O
mà OI là trung tuyến
nên OI vuông góc AC
góc OIE+góc OBE=180 độ
=>OIEB nội tiếp
b: góc ACB=1/2*180=90 độ
=>CB vuông góc AE
=>EB^2=EC*EA
Xét tam giascOAC cân tại O nên ta có góc \(\widehat{CAO}=\widehat{ACO}\)
mà ta có \(sd \widebat{BC}=\widehat{BOC}=\widehat{OCA}+\widehat{CAO}=2\widehat{CAO}=2\widehat{CAB}\)
vajay ta cos dpcm
góc COB=40+110=150 độ
=>sđ cung nhỏ BC=150 độ
sđ cung lớn BC=360-150=210 độ
Xét \(\Delta OAC\) có : \(OA=OC\)
\(\Leftrightarrow\Delta OAC\) cân tại O
\(\Leftrightarrow\widehat{OAC}=\widehat{OCA}\)
Ta có :
\(sđ\stackrel\frown{BC}=\widehat{BOC}=2\widehat{CAB}\)
\(\Leftrightarrow\widehat{BAC}=\dfrac{1}{2}sđ\stackrel\frown{BC}\left(đpcm\right)\)