Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAM vuông tại A có cosAOM=OA/OM=1/2
nên góc AOM=60 độ
=>góc AOB=60 độ
=>sđ cung AB=60 độ
b: Xét (O) có
MA,MC là tiếp tuyến
nên MA=MC
mà OA=OC
nên OM là trung trực của AC
=>OM vuông góc với AC
c: Xét ΔOAB có OA=OB và góc AOB=60 độ
nên ΔOAB đều
mà AH là đườg cao
nên H là trung điểm của OB
=>HO=HB
Vì MO là trung trực của AC
nên MO vuông góc AC tại H và H là trung điểm của AC
HA*HC=HA^2
HO*HM=HA^2
=>HA*HC=HO*HM
=>HA*HC=HB*HM
d: Xét ΔOBC có OB=OC và góc BOC=60 độ
nên ΔBCO đều
=>OB=OC=BC=OA=AB
=>OA=AB=BC=OC
=>OABC là hình thoi
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)
Vì MN là tiếp tuyến của đường tròn (O) tại N nên
Xét tam giác vuông MNO có:
Đáp án: D