K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ANHM có 

\(\widehat{ANH}+\widehat{AMH}=180^0\)

Do đó: ANHM là tứ giác nội tiếp

b: Xét ΔBNH vuông tại N và ΔBMA vuông tại M có 

\(\widehat{NBH}\) chung

Do đó: ΔBNH∼ΔBMA

Suy ra: BN/BM=BH/BA

hay \(BN\cdot BA=BH\cdot BM\)

Xét ΔCMH vuông tại M và ΔCNA vuông tại N có 

\(\widehat{MCH}\) chung

Do đó: ΔCMH∼ΔCNA

Suy ra: CM/CN=CH/CA
hay \(CM\cdot CA=CH\cdot CN\)

\(BN\cdot BA+CM\cdot CA=BM\cdot BM+CH\cdot CN=BC^2\)

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

Tâm I là trung điểm của AH

1 tháng 6 2021

b) \(\widehat{NAB}=\widehat{AFE}=\widehat{ACB}\) nên NA là tiếp tuyến của (O).

Do O, N nằm trên đường trung trực của AB nên A, B đối xứng với nhau qua ON.

Từ đó NB là tiếp tuyến của (O).

c) Do NA là tiếp tuyến của (O) nên \(\Delta NAL\sim\Delta NKA(g.g)\)

\(\Rightarrow\dfrac{NA}{NK}=\dfrac{AL}{KA}=\dfrac{NL}{NA}\Rightarrow\left(\dfrac{AL}{KA}\right)^2=\dfrac{NA}{NK}.\dfrac{NL}{NA}=\dfrac{NL}{NK}\).

Tương tự do NB là tiếp tuyến của (O) nên \(\left(\dfrac{BL}{KB}\right)^2=\dfrac{NL}{NK}\Rightarrow\left(\dfrac{AL}{KA}\right)^2=\left(\dfrac{BL}{KB}\right)^2\Rightarrow\dfrac{AL}{KA}=\dfrac{BL}{KB}\Rightarrow\dfrac{AL}{BL}=\dfrac{KA}{KB}=\dfrac{2R}{KB}\).

Từ đó \(\dfrac{BK.AL}{BL}=2R\) không đổi \(\).

Sửa lại đề là đường tròn (HDS) đi qua một điểm cố định.

Ta có \(\widehat{ASE}=\widehat{EAS}=\widehat{OCA}\) nên tứ giác OECS nội tiếp. Từ đó \(AO.AS=AE.AC=AH.AD\). Suy ra tứ giác OHDS nội tiếp nên đường tròn ngoại tiếp tam giác HDS đi qua O cố định

31 tháng 5 2021

Do tứ giác BCEF nội tiếp nên ME . MF = MB . MC

Lại có tứ giác BCKA nội tiếp nên MC . MB = MK . MA

Suy ra MK . MA = ME . MF nên tứ giác AKEF nội tiếp.

Mà tứ giác AEHF nội tiếp nên 5 điểm A, E, F, H, K đồng viên.

Suy ra \(\widehat{HKA}=\widehat{HEA}=90^o\Rightarrow HK\perp AM\).

23 tháng 5 2020

Đéo biết

7 tháng 5 2019

a) Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^o+90^o=180^o\)

=> AEHF là tứ giác nt

b) Xét tứ giác BCEF có 2 góc \(\widehat{BFC}\)và \(\widehat{CEB}\)cùng nhìn đoạn BC một góc 90o

=> BCEF là tứ giác nt

=> \(\widehat{KBF}=\widehat{KEC}\)(cùng bù với \(\widehat{FBC}\))

Xét \(\Delta KBF\)và \(\Delta KEC\)

 \(\widehat{KBF}=\widehat{KEC}\)

\(\widehat{CKE}\)chung

=> \(\Delta KBF\)ᔕ \(\Delta KEC\)(g-g)

=> \(\frac{KB}{KE}=\frac{KF}{KC}\)

=> KB . KC = KE . KF (1)

c) Nối M với B

Xét (O) có tứ giác AMBC nội tiếp đường tròn đó

=> \(\widehat{KBM}=\widehat{KAB}\)

Xét \(\Delta KBM\)và \(\Delta KAC\)

\(\widehat{KBM}=\widehat{KAC}\)

\(\widehat{AKC}\)chung

=> \(\Delta KBM\)ᔕ \(\Delta KAC\)(g.g)

=> \(\frac{KB}{KA}=\frac{KM}{KC}\)=> KB . KC = KA . KM (2)

Từ (1) (2) => KE . KF = KA . KM

=> \(\frac{KF}{KA}=\frac{KM}{KE}\)

Xét \(\Delta KFMvà\Delta KAE\)có 

\(\widehat{AFE}\)chung

\(\frac{KF}{KA}=\frac{KM}{KE}\)

=> \(\Delta KFM\)ᔕ \(\Delta KAE\)(g-g)  <=>  \(\widehat{KMF}=\widehat{KEA}\)hay \(\widehat{KMF}=\widehat{FEA}\)

Xét tứ giác AMFE có \(\widehat{KMF}=\widehat{FEA}\)=> AMFE là tứ giác nội tiếp

=> A, M, F ,E cùng thuộc một đường tròn 

Mà A, F, H,E cùng thuộc một đường tròn (AFHE là tgnt)

=> A,F,M,H,E cùng thuộc một đường tròn

=> AMHE là tứ giác nt 

=> \(\widehat{AMH}+\widehat{AEH}=180^o\)=> \(\widehat{AMH}=180^o-\widehat{AEH}=180^o-90^o=90^o\)

=> \(MH\perp AK\)

PHẦN D NGHĨ SAU NHÉ

 
7 tháng 5 2019

d) À mik có ghi thiếu. Câu d c/m: MH cố định khi A di chuyển trên cung lớn BC