Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề; AH vuông góc BC, I là trung điểm của AH, MO cắt AB tại K
a: A,E,B,C cùng thuộc (O)
=>góc AEB+góc ACB=180 dộ
=>góc AEK+góc KEB+góc ACB=180 độ
=>góc KEB=90 độ-góc ACB
góc KMB=90 độ-góc ABM
mà góc ABM=góc ACB
nên góc KEB=góc KMB
=>MEKB nội tiếp
=>góc EMK=góc EBK=góc EAM
=>OM là tiếp tuyến của đừog tròn ngoại tiếp ΔMEA
a) Ta có
OA vg góc vs MA (gt) => góc MAO = 90 độ
OB vg góc vs MB (gt) => góc MBO = 90 độ
Tứ giác MAOB có góc MAO + góc MBO = 90 + 90 = 180 độ
=> MAOB nội tiếp
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA
=>MA^2=MD*MC=OM^2-R^2
b: Xét (O) co
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB tại H
=>MH*MO=MA^2=MC*MD
=>MH/MD=MC/MO
=>ΔMHC đồng dạng vơi ΔMDO
=>góc MHC=góc MDO
=>góc ODC+góc OHC=180 độ
=>OHCD nội tiếp