Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Người ra đề chắc hơi lộn xộn một chút về kí hiệu các điểm, vì điểm \(A\left(1;2\right)\) chắc chắn không liên quan gì đến điểm A trong "cắt đường tròn tại 2 điểm AB" (vì một điểm thuộc đường tròn (C) còn 1 điểm thì không)
Để đỡ nhầm lẫn, chúng ta thay tên \(A\left(1;2\right)\) bằng \(M\left(1;2\right)\)
Đường tròn (C) tâm \(I\left(2;-1\right)\) bán kính \(R=2\)
Do \(AB=4=2R\) nên AB là đường kính
\(\Rightarrow\Delta\) đi qua tâm I
\(\overrightarrow{IM}=\left(1;-3\right)\Rightarrow\) đường thẳng \(\Delta\) nhận (3;1) là 1 vtpt
Phương trình \(\Delta\):
\(3\left(x-1\right)+1\left(y-2\right)=0\Leftrightarrow3x+y-5=0\)
Câu 1:
(C): \(\left(x-1\right)^2+\left(y-1\right)^2=1\Rightarrow\) (C) có tâm \(I\left(1;1\right)\) bán kính \(R=1\)
\(\Rightarrow\) đường tròn tâm M có bán kính \(r=1\Rightarrow IM=r+R=2\)
Do \(M\in d\Rightarrow M\left(a;a+3\right)\)
\(\overrightarrow{IM}=\left(a-1;a+2\right)\Rightarrow IM=\sqrt{\left(a-1\right)^2+\left(a+2\right)^2}=2\)
\(\Leftrightarrow2a^2+2a+1=0\) \(\Rightarrow\) pt vô nghiệm
Vậy không tồn tại M thỏa mãn
Câu 2:
Đường tròn (C) có tâm \(O\left(0;0\right)\) bán kính R=1 \(\Rightarrow\overrightarrow{OI}=\left(2;2\right)\)
Gọi giao điểm của OI và AB là H \(\Rightarrow H\) là trung điểm AB và \(IO\perp AB\)
Trong tam giác vuông \(OAH\) có:
\(OH=\sqrt{OA^2-AH^2}=\sqrt{R^2-\frac{AB^2}{4}}=\frac{\sqrt{2}}{2}\)
Do \(IO\perp AB\Rightarrow\) đường thẳng AB nhận \(\overrightarrow{n_{AB}}=\left(1;1\right)\) là 1 vtpt
\(\Rightarrow\) phương trình AB có dạng: \(x+y+c=0\)
Mà \(d\left(O;AB\right)=OH\Rightarrow\frac{\left|0.1+0.1+c\right|}{\sqrt{1^2+1^2}}=\frac{\sqrt{2}}{2}\) \(\Rightarrow\left|c\right|=1\Rightarrow c=\pm1\)
Vậy có 2 pt đường thẳng AB thỏa mãn yêu cầu: \(\left[{}\begin{matrix}x+y+1=0\\x+y-1=0\end{matrix}\right.\)
\(PT\left(C\right):\left(x+1\right)^2+\left(y-7\right)^2=85\)
\(\Rightarrow\) Tâm \(I\left(-1;7\right)\) và bán kính là \(\sqrt{85}\)
PT tiếp tuyến qua \(M\left(1;-2\right)\Rightarrow x_0=1,y_0=-2\)
\(PT\) tiếp tuyến có dạng \(\left(a-x_0\right)\left(x-x_0\right)+\left(b-y_0\right)\left(y-y_0\right)=0\)
\(\Leftrightarrow\left(-1-1\right)\left(x-1\right)+\left(7+2\right)\left(y+2\right)=0\)
\(\Leftrightarrow-2\left(x-1\right)+9\left(y+2\right)=0\)
\(\Leftrightarrow-2x+2+9y+18=0\)
\(\Leftrightarrow-2x+9y+20=0\)
a. \(\overrightarrow{BI}=\left(4;3\right)\Rightarrow R^2=IB^2=4^2+3^2=25\)
Phương trình đường tròn:
\(\left(x-3\right)^2+\left(y-6\right)^2=25\)
b.
\(\Delta\) vuông góc d nên nhận (1;-1) là 1 vtpt
Phương trình \(\Delta\) có dạng: \(x-y+c=0\)
Giả sử M là giao điểm \(\Delta\) với Ox và N là giao điểm với Oy \(\Rightarrow M\left(-c;0\right)\) ; \(N\left(0;c\right)\)
\(\Rightarrow\overrightarrow{MN}=\left(c;c\right)\Rightarrow MN=\sqrt{c^2+c^2}=\left|c\right|\sqrt{2}\)
\(S_{BMN}=\dfrac{1}{2}MN.d\left(B;MN\right)=\dfrac{1}{2}.\left|c\right|\sqrt{2}.\dfrac{\left|-1-3+c\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{5}{2}\)
\(\Rightarrow\left|c^2-4c\right|=5\Rightarrow\left[{}\begin{matrix}c^2-4c=5\\c^2-4c=-5\left(vô-nghiệm\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}c=-1\\c=5\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-y-1=0\\x-y+5=0\end{matrix}\right.\)
(C): x^2-2x+1+y^2+4y+4=9
=>(x-1)^2+(y+2)^2=9
=>I(1;-2); R=3
Khi x=1 và y=5 thì (1-1)^2+(5+2)^2=49<>9
=>A nằm ngoài (C)
Gọi (d): y=ax+b là phương trình tiếp tuyến tại A của (C)
Thay x=1 và y=5 vào (d), ta được:
a+b=5
=>b=5-a
=>y=ax+5-a
=>ax-y-a+5=0
Theo đề, ta có: d(I;(d))=3
=>\(\dfrac{\left|1\cdot a+\left(-2\right)\cdot\left(-1\right)-a+5\right|}{\sqrt{a^2+1}}=3\)
=>9a^2+9=(a+2-a+5)^2
=>9a^2+9=49
=>9a^2=40
=>a^2=40/9
=>\(a=\pm\dfrac{2\sqrt{10}}{3}\)
=>\(b=5\mp\dfrac{2\sqrt{10}}{3}\)
Đường tròn tâm \(I\left(2;-1\right)\Rightarrow\overrightarrow{AI}=\left(4;-3\right)\)
Do tiếp tuyến d vuông góc AI nên nhận \(\left(4;-3\right)\) là 1 vtpt
Phương trình tiếp tuyến tại A:
\(4\left(x+2\right)-3\left(y-2\right)=0\Leftrightarrow4x-3y+14=0\)