K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 5 2020

Đường tròn tâm \(I\left(2;-1\right)\Rightarrow\overrightarrow{AI}=\left(4;-3\right)\)

Do tiếp tuyến d vuông góc AI nên nhận \(\left(4;-3\right)\) là 1 vtpt

Phương trình tiếp tuyến tại A:

\(4\left(x+2\right)-3\left(y-2\right)=0\Leftrightarrow4x-3y+14=0\)

22 tháng 5 2020

c) viết pttt của (C) và _|_ với △ ( sửa đề )

NV
22 tháng 3 2023

Người ra đề chắc hơi lộn xộn một chút về kí hiệu các điểm, vì điểm \(A\left(1;2\right)\) chắc chắn không liên quan gì đến điểm A trong "cắt đường tròn tại 2 điểm AB" (vì một điểm thuộc đường tròn (C) còn 1 điểm thì không)

Để đỡ nhầm lẫn, chúng ta thay tên \(A\left(1;2\right)\) bằng \(M\left(1;2\right)\)

Đường tròn (C) tâm \(I\left(2;-1\right)\) bán kính \(R=2\)

Do \(AB=4=2R\) nên AB là đường kính

\(\Rightarrow\Delta\) đi qua tâm I

\(\overrightarrow{IM}=\left(1;-3\right)\Rightarrow\) đường thẳng \(\Delta\) nhận (3;1) là 1 vtpt

Phương trình \(\Delta\):

\(3\left(x-1\right)+1\left(y-2\right)=0\Leftrightarrow3x+y-5=0\)

22 tháng 3 2023

Dạ mình làm thế này được không ạ? (đề vẫn vậy ạ)

Không có mô tả.

 

NV
1 tháng 4 2019

Câu 1:

(C): \(\left(x-1\right)^2+\left(y-1\right)^2=1\Rightarrow\) (C) có tâm \(I\left(1;1\right)\) bán kính \(R=1\)

\(\Rightarrow\) đường tròn tâm M có bán kính \(r=1\Rightarrow IM=r+R=2\)

Do \(M\in d\Rightarrow M\left(a;a+3\right)\)

\(\overrightarrow{IM}=\left(a-1;a+2\right)\Rightarrow IM=\sqrt{\left(a-1\right)^2+\left(a+2\right)^2}=2\)

\(\Leftrightarrow2a^2+2a+1=0\) \(\Rightarrow\) pt vô nghiệm

Vậy không tồn tại M thỏa mãn

NV
1 tháng 4 2019

Câu 2:

Đường tròn (C) có tâm \(O\left(0;0\right)\) bán kính R=1 \(\Rightarrow\overrightarrow{OI}=\left(2;2\right)\)

Gọi giao điểm của OI và AB là H \(\Rightarrow H\) là trung điểm AB và \(IO\perp AB\)

Trong tam giác vuông \(OAH\) có:

\(OH=\sqrt{OA^2-AH^2}=\sqrt{R^2-\frac{AB^2}{4}}=\frac{\sqrt{2}}{2}\)

Do \(IO\perp AB\Rightarrow\) đường thẳng AB nhận \(\overrightarrow{n_{AB}}=\left(1;1\right)\) là 1 vtpt

\(\Rightarrow\) phương trình AB có dạng: \(x+y+c=0\)

\(d\left(O;AB\right)=OH\Rightarrow\frac{\left|0.1+0.1+c\right|}{\sqrt{1^2+1^2}}=\frac{\sqrt{2}}{2}\) \(\Rightarrow\left|c\right|=1\Rightarrow c=\pm1\)

Vậy có 2 pt đường thẳng AB thỏa mãn yêu cầu: \(\left[{}\begin{matrix}x+y+1=0\\x+y-1=0\end{matrix}\right.\)

24 tháng 4 2023

\(PT\left(C\right):\left(x+1\right)^2+\left(y-7\right)^2=85\)

\(\Rightarrow\) Tâm \(I\left(-1;7\right)\) và bán kính là \(\sqrt{85}\)

PT tiếp tuyến qua \(M\left(1;-2\right)\Rightarrow x_0=1,y_0=-2\)

\(PT\) tiếp tuyến có dạng \(\left(a-x_0\right)\left(x-x_0\right)+\left(b-y_0\right)\left(y-y_0\right)=0\)

\(\Leftrightarrow\left(-1-1\right)\left(x-1\right)+\left(7+2\right)\left(y+2\right)=0\)

\(\Leftrightarrow-2\left(x-1\right)+9\left(y+2\right)=0\)

\(\Leftrightarrow-2x+2+9y+18=0\)

\(\Leftrightarrow-2x+9y+20=0\)

 

NV
14 tháng 5 2021

a. \(\overrightarrow{BI}=\left(4;3\right)\Rightarrow R^2=IB^2=4^2+3^2=25\)

Phương trình đường tròn:

\(\left(x-3\right)^2+\left(y-6\right)^2=25\)

b.

\(\Delta\) vuông góc d nên nhận (1;-1) là 1 vtpt

Phương trình \(\Delta\) có dạng: \(x-y+c=0\)

Giả sử M là giao điểm \(\Delta\) với Ox và N là giao điểm với Oy \(\Rightarrow M\left(-c;0\right)\) ; \(N\left(0;c\right)\)

\(\Rightarrow\overrightarrow{MN}=\left(c;c\right)\Rightarrow MN=\sqrt{c^2+c^2}=\left|c\right|\sqrt{2}\)

\(S_{BMN}=\dfrac{1}{2}MN.d\left(B;MN\right)=\dfrac{1}{2}.\left|c\right|\sqrt{2}.\dfrac{\left|-1-3+c\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{5}{2}\)

\(\Rightarrow\left|c^2-4c\right|=5\Rightarrow\left[{}\begin{matrix}c^2-4c=5\\c^2-4c=-5\left(vô-nghiệm\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}c=-1\\c=5\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-y-1=0\\x-y+5=0\end{matrix}\right.\)

(C): x^2-2x+1+y^2+4y+4=9

=>(x-1)^2+(y+2)^2=9

=>I(1;-2); R=3

Khi x=1 và y=5 thì (1-1)^2+(5+2)^2=49<>9

=>A nằm ngoài (C)

Gọi (d): y=ax+b là phương trình tiếp tuyến tại A của (C)

Thay x=1 và y=5 vào (d), ta được:

a+b=5

=>b=5-a

=>y=ax+5-a

=>ax-y-a+5=0

Theo đề, ta có: d(I;(d))=3

=>\(\dfrac{\left|1\cdot a+\left(-2\right)\cdot\left(-1\right)-a+5\right|}{\sqrt{a^2+1}}=3\)

=>9a^2+9=(a+2-a+5)^2

=>9a^2+9=49

=>9a^2=40

=>a^2=40/9

=>\(a=\pm\dfrac{2\sqrt{10}}{3}\)

=>\(b=5\mp\dfrac{2\sqrt{10}}{3}\)