K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

Đường tròn (C):  x 2 + y 2 + 4 x + 2 y + 4 = 0  có tâm I(-2;-1) và bán kính R = 1.

Gọi 2 tiếp điểm là B và C.

Ta có: B A C ^ = 60 0 nên B A I ^ = I A C ^ = 1 2 B A C ^ = 30 0 ( tính  chất 2 tiếp tuyến cắt nhau).

Vì sin B A I ^ = sin 30 0 = 1 2 ;  lại có:   sin B A I ^ = B I A I = R A I

Suy ra:  R A I = 1 2 ⇔ A I = 2 R = 2  ( vì R = 1)

⇔ m + 2 2 + 3 − m 2 = 2 2 ⇒ 2 m 2 − 2 m + 9 = 0  (vô nghiệm).

Chọn D.

22 tháng 4 2017

Đường tròn (C):  x 2 + y 2 + 6 x − 2 y − 8 = 0 có tâm I(-3;1) và bán kính R = 3 2 .

Giả sử hai tiếp điểm của hai tiếp tuyến kẻ từ A là B, C (như hình vẽ).

Tứ giác IBAC có 3 góc vuông nên là hình chữ nhật.

Lại có IB = IC = R nên IBAC là hình vuông. Suy ra, tam giác IBA vuông cân.

Chọn A

25 tháng 2 2018

Đáp án D

7 tháng 1 2019

Qua điểm A(m ; m + 2) có hai tiếp tuyến với (C) khi và chỉ khi A nằm ngoài (C)

   m 2 + m + 2 2 + 4 m − 2 m − 4 > 0 ⇒ 2 m 2 + 6 m > 0 ⇒ m > 0 m < − 3

Chọn D

13 tháng 5 2019

Qua điểm A(-1; m) chỉ có một tiếp tuyến với (C) khi và chỉ khi  A ∈ ( C

1+  m 2 − 3 − 5 m + 8 = 0

m 2 − 5 m + 6 = 0 ⇒ m = 2 ,   m = 3

Chọn  B

4 tháng 4 2021

a, Phương trình tiếp tuyến đi qua M: \(ax+by-3a+b=0\left(\Delta\right)\)

Đường tròn đã cho có tâm \(I=\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)

Ta có: \(d\left(I;\Delta\right)=\dfrac{\left|a-2b-3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{5}\)

\(\Leftrightarrow\left(2a+b\right)^2=5\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a-2b\right)^2=0\)

\(\Leftrightarrow a=2b\)

\(\Rightarrow\Delta:2x+y-5=0\)

4 tháng 4 2021

b, Phương trình tiếp tuyến: \(\left(d\right)2x-y+m=0\left(m\in R\right)\)

Ta có: \(d\left(I;d\right)=\dfrac{\left|2.1-1.\left(-2\right)+m\right|}{\sqrt{5}}=\sqrt{5}\)

\(\Leftrightarrow\left|m+4\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-9\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}d:2x-y+1=0\\d:2x-y-9=0\end{matrix}\right.\)

NV
17 tháng 6 2020

Đường tròn (C) tâm \(I\left(-2;-1\right)\) bán kính \(R=1\)

\(\overrightarrow{IM}=\left(m+2;3-m\right)\Rightarrow IM^2=\left(m+2\right)^2+\left(3-m\right)^2=2m^2-2m+13\)

Giả sử A nằm ngoài đường tròn và 2 tiếp điểm là B và C

\(\Rightarrow\widehat{BAC}=60^0\Rightarrow\widehat{IAB}=30^0\)

\(\Rightarrow IM=\frac{IB}{sin30^0}=2IB=2R=2\Rightarrow IM^2=4\)

\(\Rightarrow2m^2-2m+13=4\Leftrightarrow2m^2-2m+9=0\) (vô nghiệm)

Ko tồn tại m thỏa mãn

Bạn xem lại đề, điểm M nằm quá xa đường tròn (M thuộc \(x+y-2=0\) ) nên góc chắc chắn là rất nhỏ