Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PTHĐGĐ là:
x^2-(2m+1)x+m^2+m-6=0
Δ=(2m+1)^2-4(m^2+m-6)
=4m^2+4m+1-4m^2-4m+24
=25>0
=>Phương trình luôn có hai nghiệm phân biệt
\(\left|x_1^2-x_2^2\right|=50\)
\(\Leftrightarrow\left|\left(2m+1\right)\right|\cdot\sqrt{\left(2m+1\right)^2-4\left(m^2+m-6\right)}=50\)
\(\Leftrightarrow\left|2m+1\right|\cdot5=50\)
=>|2m+1|=10
=>m=9/2 hoặc m=-11/2
`a)` Phương trình hoành độ của `(P)` và `(d)` là:
`x^2=(2m+2)x-m-2m`
`<=>x^2-2(m+1)x+3m=0` `(1)`
`(P)` cắt `(d)` tại `2` điểm `A,B<=>` Ptr `(1)` có `2` nghiệm phân biệt
`=>\Delta' > 0`
`<=>(m+1)^2-3m > 0`
`<=>m^2+2m+1-3m > 0`
`<=>m^2-m+1 > 0` (LĐ `AA m`)
`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m+2),(x_1.x_2=c/a=3m):}`
Ta có: `{(2x_1+x_2=5),(x_1+x_2=2m+2):}`
`<=>{(x_1=3-2m),(3-2m+x_2=2m+2):}`
`<=>{(x_1=3-2m),(x_2=4m-1):}`
Thay vào `x_1.x_2=3m`
`=>(3-2m)(4m-1)=3m`
`<=>12m-3-8m^2+2m=3m`
`<=>8m^2-11m+3=0`
`<=>(m-1)(8m-3)=0<=>[(m=1),(m=3/8):}`
a) Lập phương trình hoành độ giao điểm:
x2 = mx + 3
<=> x2 - mx - 3 = 0
Tọa độ (P) và (d) khi m = 2:
<=> x2 - 2x - 3 = 0
<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)
Tọa độ (P) và (d): A(3; 9) và B(-1; 1)
b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)
<=> (-m)2 - 4.1(-3) > 0
<=> m2 + 12 > 0 \(\forall m\)
Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)
<=> 2x2 + 2x1 = 3x1x2
<=> 2(x2 + x1) = 3x1x2
Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)
<=> 2m = 3(-3)
<=> 2m = -9
<=> m = -9/2
a, Thay m = -1/2 vào (d) ta được :
\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)
Hoành độ giao điểm thỏa mãn phương trình
\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)
\(\Delta=4-4\left(-3\right)=4+12=16>0\)
\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)
Vói x = -1 thì \(y=-2+3=1\)
Vớ x = 3 thì \(y=6+3=9\)
Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )
b, mình chưa học
\(y_1+y_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)
Xét phương trình hoành độ giao điểm của (d) và (P) ta có:
\(x^2=2x-2m+2\)
\(\Leftrightarrow x^2-2x+2m-2=0\)
Theo hệ thức Vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)
Từ (1) \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow4-4m+4=8\)
\(\Leftrightarrow m=0\)
vậy..
1) Thay x=0;y=1 vào (d)=>m=2
Hoành độ giao điểm là nghiệm của phương trình:\(x^2=x+m-1\)
\(x^2-x-m+1=0\)2 điểm phân biệt => \(\Delta>0\)
\(\Delta>0=>1-4.\left(-m+1\right)=4m-3>0=>m>\frac{3}{4}\)
Áp dụng hệ thức Vi-ét:
\(x_1+x_2=1;x_1x_2=-m+1\)
\(4.\left(\frac{1}{x_1}+\frac{1}{x_2}\right)-x_1x_2+3=0=>4.\left(\frac{x_1+x_2}{x_1x_2}\right)-x_1x_2+3=0\)
\(\Rightarrow\frac{4}{-m+1}+m-1+3=0=>\frac{4}{-m+1}+m-2=0=>m^2-3m-2=0\)
Dùng công thức nghiệm được \(\Rightarrow x_1=\frac{3-\sqrt{17}}{2}\left(KTM\right);x_2=\frac{3+\sqrt{17}}{2}\left(TM\right)\)
Vậy...
a: Khi m=-5 thì y=2(-5+1)x-(-5)+4
=>y=-8x+9
PTHĐGĐ là:
x^2+8x-9=0
=>(x+9)(x-1)=0
=>x=1 hoặc x=-9
=>y=1 hoặc y=81
b: \(A=\left|x_1-x_2\right|=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\sqrt{\left(2m+2\right)^2-4\left(m-4\right)}\)
\(=\sqrt{4m^2+8m+4-4m+16}\)
\(=\sqrt{4m^2+4m+20}\)
\(=\sqrt{\left(2m+1\right)^2+19}>=\sqrt{19}\)
Dấu = xảy ra khi m=-1/2