Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Giả sử điểm cố định mà (d) đi qua có tọa độ \(M\left(x_0;y_0\right)\)
Với mọi m, ta có:
\(y_0=\left(m+2\right)x_0+m\)
\(\Leftrightarrow m\left(x_0+1\right)+2x_0-y_0=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\2x_0-y_0=0\end{matrix}\right.\) \(\Rightarrow M\left(-1;-2\right)\)
b. Để (d) cắt 2 trục tạo thành tam giác thì \(m\ne\left\{0;-2\right\}\)
Khi đó ta có: \(\left\{{}\begin{matrix}A\left(-\dfrac{m}{m+2};0\right)\\B\left(0;m\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}OA=\left|\dfrac{m}{m+2}\right|\\OB=\left|m\right|\end{matrix}\right.\)
\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{m^2}{\left|m+2\right|}=1\)
\(\Leftrightarrow\left[{}\begin{matrix}m^2=m+2\\m^2=-m-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=2\end{matrix}\right.\)
Lời giải:
a. Gọi $I(x_0,y_0)$ là điểm cố định mà $(d)$ luôn đi qua. Ta có:
$y_0=(m+1)x_0-m+2, \forall m$
$m(x_0-1)+(x_0+2-y_0)=0, \forall m$
\(\Leftrightarrow \left\{\begin{matrix} x_0-1=0\\ x_0+2-y_0=0\end{matrix}\right.\Leftrightarrow \Rightarrow \left\{\begin{matrix} x_0=1\\ y_0=3\end{matrix}\right.\)
Vậy $I(1,3)$ là điểm cố định mà $d$ luôn đi qua với mọi $m$
b.
$A(0,a)$ là giao của $(d)$ với trục $Oy$
$B(b,0)$ là giao của $(d)$ với trục $Ox$
Nếu $m=-1$ thì $y=3$
Khi đó, khoảng cách từ $O$ đến $(d)$ là $3$
Nếu $m\neq -1$ thì:
$a=(m+1).0-m+2=-m+2$
$b=\frac{m-2}{m+1}$
Theo hệ thức lượng trong tam giác vuông thì khoảng cách từ $O$ đến $(d)$ là $h$ thì:
$\frac{1}{h^2}=\frac{1}{a^2}+\frac{1}{b^2}$
$=\frac{1}{(m-2)^2}+\frac{(m+1)^2}{(m-2)^2}=\frac{m^2+2m+2}{(m-2)^2}$
$\Rightarrow h=\frac{|m-2|}{\sqrt{m^2+2m+2}}$
\(a,\) Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà (d) đi qua với mọi m
\(\Leftrightarrow y_0=\left(m+2\right)x_0+m\\ \Leftrightarrow mx_0+m+2x_0-y=0\\ \Leftrightarrow m\left(x_0+1\right)+\left(2x_0-y_0\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-2\end{matrix}\right.\Leftrightarrow A\left(-1;-2\right)\)
Vậy \(A\left(-1;-2\right)\) là điểm cố định mà (d) đi qua với mọi m
\(b,\) PT giao Ox tại A và Oy tại B: \(\left\{{}\begin{matrix}y=0\Rightarrow\left(m+2\right)x=-m\Rightarrow x=-\dfrac{m}{m+2}\Rightarrow A\left(-\dfrac{m}{m+2};0\right)\Rightarrow OA=\left|-\dfrac{m}{m+2}\right|\\x=0\Rightarrow y=m\Rightarrow B\left(0;m\right)\Rightarrow OB=\left|m\right|\end{matrix}\right.\)
\(S_{OAB}=\dfrac{1}{2}\Leftrightarrow\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\Leftrightarrow\left|-\dfrac{m}{m+2}\right|\left|m\right|=1\\ \Leftrightarrow\left|-\dfrac{m^2}{m+2}\right|=1\Leftrightarrow\left[{}\begin{matrix}-\dfrac{m^2}{m+2}=1\\\dfrac{m^2}{m+2}=1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-m^2=m+2\\m^2=m+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m^2+m+2=0\left(vô.n_0\right)\\m^2-m-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=2\\m=-1\end{matrix}\right.\)
Vậy ...