Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Thay x=1 vào y=x+1, ta đc:
y=1+1=2
Thay x=1 và y=2 vào (d), ta được;
m+1-2=2
=>m+1=2
=>m=1
c: Tọa độ A là:
y=0 và (m+1)x-2=0
=>x=2/m+1 và y=0
=>OA=2/|m+1|
Tọa độ B là:
x=0 và y=-2
=>OB=2
Để góc OAB=45 độ thì OA=OB
=>|m+1|=1
=>m=0 hoặc m=-2
P/s: Bài này thì không có chắc tại cũng mới học qua
\(a)\) Hàm số trên nghịch biến
\(\Leftrightarrow3m-1< 0\)
\(\Leftrightarrow3m< 1\)
\(\Leftrightarrow m< \frac{1}{3}\)
Vậy \(m< \frac{1}{3}\)thì hàm số trên nghịch biến
\(b)\) Hàm số \(y=\left(3m-1\right)x+m-2\)có dạng \(y=ax\)
\(\Leftrightarrow m-2=0\)
\(\Leftrightarrow m=2\)
\(c)\) VÌ \(n\left(-1;1\right)\in\left(d\right)\Rightarrow\)Thay \(x=-1;y=1\)vào đths
Ta có: \(\left(3m-1\right)\left(-1\right)+m-2=1\)
\(\Leftrightarrow-3m+1+m-2=1\)
\(\Leftrightarrow-2m-1=1\)
\(\Leftrightarrow m=-1\)
Vậy \(m=-1\)
\(d)\) Vì \(\left(d\right)\)cắt đường thẳng \(y=2x-1\)tại điểm có hoành độ \(=1\)
\(\Rightarrow\) Thay \(x=1\)vào hàm số \(y=2x-1\)
Ta có: \(y=2.1-1\)
\(\Leftrightarrow y=2-1=1\)
\(\Leftrightarrow\left(1;1\right)\in\left(d\right)\)
Thay \(x=1;y=1\)vào hàm số \(y=\left(3m-1\right)x+m-2\)
Ta có: \(\left(3m-1\right)1+m-2=1\)
\(\Leftrightarrow3m-1+m-2=1\)
\(\Leftrightarrow4m-3=1\)
\(\Leftrightarrow m=1\)
Vậy \(m=1\)
\(e)\) \(\left(d\right)//\)đường thẳng \(y=5x+1\)
\(\Leftrightarrow\hept{\begin{cases}3m-1=5\\m-2\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}3m=6\\m\ne3\end{cases}\Leftrightarrow}\hept{\begin{cases}m=2\\m\ne3\end{cases}}}\Leftrightarrow m=2\)
Vậy \(m=2\)
\(f)\) \(\left(d\right)\)cắt đường thẳng \(y=2x-2020\)
\(\Leftrightarrow3m-1\ne-2\)
\(\Leftrightarrow3m\ne3\)
\(\Leftrightarrow m\ne1\)
Vậy \(m\ne1\)
\(g)\) \(\left(d\right)\perp\)đường thẳng \(y=\frac{1}{4}x-2019\)
\(\Leftrightarrow\left(3m-1\right).\frac{1}{4}=-1\)
\(\Leftrightarrow\frac{3}{4}m-\frac{1}{4}=-1\)
\(\Leftrightarrow\frac{3}{4}m=-\frac{3}{4}\)
\(\Leftrightarrow m=-1\)
Vậy \(m=-1\)
\(h)\) \(\left(d\right)\)cắt đường thẳng \(y=8x-5\)tại một điểm thuộc trục tung
\(\Leftrightarrow\hept{\begin{cases}3m-1\ne8\\m-2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}3m\ne9\\m=-5+2\end{cases}\Leftrightarrow}\hept{\begin{cases}m\ne3\\m=3\end{cases}}\left(ktm\right)}\)
Vậy không tìm được giá trị \(x\)nào TMĐK
a.
Pt hoành độ giao điểm (d) và (d'):
\(x+1=2x-2m-1\Leftrightarrow x=2m+2\)
\(\Rightarrow y=x+1=2m+3\)
2 đường thẳng cắt nhau tại 1 điểm nằm trong góc phần tư thứ II khi:
\(\left\{{}\begin{matrix}2m+2< 0\\2m+3>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< -1\\m>-\dfrac{3}{2}\end{matrix}\right.\) \(\Rightarrow-\dfrac{3}{2}< m< -1\)
2 trục tung - hoành của hệ trục tọa độ cắt nhau chia mặt phẳng tọa độ làm 4 phần đánh dấu theo thứ tự ngược chiều kim đồng hồ, góc phần tư thứ I là phần tương ứng từ 12 giờ đến 3 giờ (ứng với x;y đều dương), góc phần tư thứ II từ 9 giờ đến 12h ( x âm y dương), góc III từ 6h đến 9h (x;y đều âm), góc IV từ 3h đến 6h (x dương y âm)
b.
\(\Delta'=m^2-6m+9=\left(m-3\right)^2\ge0;\forall m\) nên pt luôn có 2 nghiệm
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-6\\x_1x_2=6m-m^2\end{matrix}\right.\)
Do \(x_1\) là nghiệm nên \(x_1^2+6x_1+6m-m^2=0\Leftrightarrow2x_1^2+12x_1=2m^2-12m\)
Từ đó:
\(x_1^3-x_2^3+2x_1^2+12x_1+72=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(\left(x_1+x_2\right)^2-x_1x_2\right)+2m^2-12m+72=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(36+m^2-6m\right)+2\left(m^2-6m+36\right)=0\)
\(\Leftrightarrow\left(x_1-x_2+2\right)\left(m^2-6m+36\right)=0\)
Do \(m^2-6m+36=\left(m-3\right)^2+27>0;\forall m\)
\(\Rightarrow x_1-x_2+2=0\)
Kết hợp \(x_1+x_2=-6\) \(\Rightarrow\left\{{}\begin{matrix}x_1-x_2=-2\\x_1+x_2=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-4\\x_2=-2\end{matrix}\right.\)
Thế vào \(x_1x_2=6m-m^2\)
\(\Rightarrow6m-m^2=8\Rightarrow m^2-6m+8=0\Rightarrow\left[{}\begin{matrix}m=2\\m=4\end{matrix}\right.\)
b: Để hai đường song song thì m-2=2
=>m=4
c: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\x=\dfrac{-2}{m-2}\end{matrix}\right.\Leftrightarrow OA=\dfrac{2}{\left|m-2\right|}\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\Leftrightarrow OB=2\)
SAOB=1
=>1/2*4/|m-2|=1
=>4/|m-2|=2
=>|m-2|=2
=>m=4 hoặc m=0
Làm: (d) y\(=\) (m-1)x+m+3
b, Để (d) cắt đường y=-x+1 trên Oy thì
\(\left\{{}\begin{matrix}a\ne a'\\b=b'\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m-1\ne-1\\1=m+3\end{matrix}\right.\Leftrightarrow m=-2\)
Kl:............
a, Để (d) cắt đường y=x+2 thì a\(\ne a'\Leftrightarrow m-1\ne1\Leftrightarrow m\ne2\)
Khi m khác 2 ta giả sử (d) cắt đường y=x+2 tại điểm A(x';y') thì
\(\left\{{}\begin{matrix}y'=\left(m-1\right)x+m+3\\y'=x'+2\end{matrix}\right.\)
\(\Rightarrow\left(m-1\right)x+m+3=x'+2\)
\(\Leftrightarrow x'\left(m-2\right)=-1-m\)
\(\Leftrightarrow x'=\frac{-1-m}{m-2}\left(v\text{ì}m\ne2\right)\)
\(\Rightarrow y'=\frac{m-5}{m-2}\)
Để A thuộc góc phần tư thứ nhất thì \(\left\{{}\begin{matrix}x'>0\\y'>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\frac{-1-m}{m-2}>0\left(1\right)\\\frac{m-5}{m-2}>0\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow-1< m< 2\)
\(\left(2\right)\Leftrightarrow\left[{}\begin{matrix}m>5\\m< 2\end{matrix}\right.\)
Ta thấy (1) thoả mãn (2) và thoả mãn m \(\ne2\)
Kl: -1<m<2