Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Từ M kẻ tiếp tuyến Mx của (O) nên OA vuông góc với Mx
Ta có tứ giác MEHF là tứ giác nội tiếp => góc MFE=góc MHE(1)
Mà góc MHE=góc MAH(2) (+góc HMA=90o)
Từ (1) và (2) => góc MAB = góc MFE
Mặt khác góc MAB=góc BMx (=1/2 số đo cung MB )
=>EF song song với Mx
Om vuông góc Mx => OM vuông góc È
mà MD vuông góc È => o thuộc MD => dpcm
a: góc AHI+góc AKI=180 độ
=>AHIK nội tiếp
b: sđ cung IB=sđ cung IC
=>góc HAI=góc KAI
Xét ΔHAI vuông tại H và ΔKAI vuông tại K có
AI chung
góc HAI=góc KAI
=>ΔHAI=ΔKAI
=>IH=IK
góc HIK+góc BAC=180 độ
góc BIC+góc BAC=180 độ
=>góc HIK=góc BIC
a) Ta thấy \(\widehat{AMN}=\widehat{ABH}+\frac{1}{2}\widehat{BHQ}=\widehat{ACH}+\frac{1}{2}\widehat{CHP}=\widehat{ANM}\). Suy ra \(\Delta AMN\) cân tại A.
b) Dễ thấy tứ giác BEFC và BQPC nội tiếp, suy ra \(\widehat{HEF}=\widehat{HCB}=\widehat{HPQ}\), suy ra EF || PQ
Hiển nhiên \(OA\perp PQ\). Do đó \(OA\perp EF.\)
c) Gọi MK cắt BH tại I, NK cắt CH tại J, HK cắt BC tại S.
Vì A,K là trung điểm hai cung MN của (AMN) nên AK là đường kính của (AMN)
Suy ra \(MK\perp AB,NK\perp AC\)hay MK || CH, NK || BH
Ta có \(\Delta BHQ~\Delta CHP\), theo định lí đường phân giác và Thales thì:
\(\frac{IH}{IB}=\frac{MQ}{MB}=\frac{NP}{NC}=\frac{JH}{JC}\). Suy ra IJ || BC
Cũng từ MK || CH, NK || BH suy ra HIKJ là hình bình hành hay HK chia đôi IJ
Do vậy HK chia đôi BC theo bổ đề hình thang. Vậy HK đi qua S cố định.
Mình không thể giải được, có cách giải quyết là cậu chứng minh 2 điểm đó nằm trong 2 tam giác nội tiếp đường tròn thì sẽ thuộc đường tròn
nhưng làm sao để xác định đk 2 điểm đó