Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để d đi qua gốc tọa độ thì (m – 2)0 + (3m – 1)0 = 6m – 2 ⇔ m = 1 3
Vậy m = 1 3
Đáp án: A
Đường thẳng (d) qua điểm cố định \(A\left(-1;1\right)\)
Đường thẳng OA có phương trình: \(y=-x\) nên có hệ số góc bằng -1
\(\Rightarrow\) K/c từ O đến (d) lớn nhất khi 2 đường thẳng (d) và OA vuông góc
\(\Rightarrow\) Tích hệ số góc của chúng bằng -1
Ta có: \(\left(m-4\right)x+\left(m-3\right)y=1\Rightarrow\left(3-m\right)y=\left(m-4\right)x-1\)
\(\Rightarrow y=\dfrac{m-4}{3-m}-\dfrac{1}{3-m}\)
\(\Rightarrow\left(\dfrac{m-4}{3-m}\right).\left(-1\right)=-1\)
\(\Rightarrow m-4=3-m\)
\(\Rightarrow m=\dfrac{7}{2}\)
a: Thay x=0 và y=-5 vào (d), ta được:
2(m+1)*0-m^2-4=-5
=>m^2+4=5
=>m=1 hoặc m=-1
b:
PTHĐGĐ là;
x^2-2(m+1)x+m^2+4=0
Δ=(2m+2)^2-4(m^2+4)
=4m^2+8m+4-4m^2-16=8m-12
Để PT có hai nghiệm phân biệt thì 8m-12>0
=>m>3/2
x1+x2=2m+2; x1x2=m^2+4
(2x1-1)(x2^2-2m*x2+m^2+3)=21
=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21
=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21
=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21
=>(2x1-1)(2x2-1)=21
=>4x1x2-2(x1+x2)+1=21
=>4(m^2+4)-2(2m+2)+1=21
=>4m^2+16-4m-4-20=0
=>4m^2-4m-8=0
=>(m-2)(m+1)=0
=>m=2(nhận) hoặc m=-1(loại)
Gốc tọa độ O (0; 0)
Để d đi qua gốc tọa độ thì tọa độ điểm O thỏa mãn phương trình
(2m – 4)x + (m – 1)y = m – 5 hay (2m – 4).0 + (m – 1).0 = m – 5 ⇔ m = 5
Vậy m = 5
Đáp án: C