K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2018

a) ∆AME = ∆CMB (c-g-c) Þ ÐEAM = ÐBCM

Mà BCM +MBC = 90 => EAM + MBC = 900

=> AHB = 900

Vậy AE vuôn góc  BC

b)Gọi O là giao điểm của AC và BD.

∆AHC vuông tại H có HO là đường trung tuyến

=>  HO = \(\frac{1}{2}\)AC = \(\frac{1}{2}\)DM

=>∆DHM vuông tại H

=>DHM = 900

Chứng minh tương tự ta có: MHF = 900

Suy ra: DHM + MHF = 1800

Vậy ba điểm D, H, F thẳng hàng.

25 tháng 8 2019

Key t chụp ở Câu hỏi của Lưu Đức Mạnh - Toán lớp 8 - Học toán với OnlineMath.Còn hình vẽ là t vẽ nha.câu c đang nghĩ~~~

25 tháng 8 2019

C,Gọi G là giao điểm của AC và BE

=> \(AG\perp BE\) (C là trực tâm tam giác ABE)

Lại có Góc GAB= Góc GBA = 45 độ

=> tam giác ABG vuông cân 

Mà A,B  cố định

=> G cố định

CMTT câu b  => D;F;G thẳng hàng

=> DF luôn đi qua điểm G cố định khi M di động trên AB
Vậy DF luôn đi qua điểm G cố định khi M di động trên AB

10 tháng 7 2015

a) Tứ giác AHKM có Góc A=H=K=90độ

vậy AHKM là hình chữ nhật.

b) Vì ABCD là hình vuông có BD là đường chéo => ABD=ADB=45 độ(1)

Vì MK vuông góc với AD

       AB vuông góc với AD

từ hai điều này suy ra AB//MK =>Góc KMD=ABD=45 độ(đồng vị) (2)

từ (1) và (2) suy ra Tam giác KDM vuông cân tại K. => KM=KD. mà KM=AH( Vì AHKM là hình chữ nhật)

=>KD=AH.(3)

Ta có KD+AK=AH+HB (4)

Từ (3) và (4) suy ra AK=HB hay HM=AK=HB

Tứ giác BHMQ có Góc B=H=Q=90 độ vậy BHMQ là Hình chữ nhật

lại có HB=HM(cmt) vậy BHMQ là hình vuông.

 

 

                                       

Câu 1. Cho đoạn thẳng AB. Trong cùng một nửa mặt phẳng có bờ là đường thẳng AB, vẽ hai tia Ax và By vuông góc với AB tại A và B. Trên đoạn thẳng AB lấy điểm M (khác A, B). Trên tia Ax, lấy điểm C (khác A, CA < CM), tia vuông góc với MC tại M cắt By tại D.a)  Chứng minh rằng:DAMC đồng dạng với DBMD.b)  Đường thẳng CD cắt AB tại E. Chứng minh rằng: EA.BD = ED.ACc)  Vẽ MH vuông góc...
Đọc tiếp

Câu 1. Cho đoạn thẳng AB. Trong cùng một nửa mặt phẳng có bờ là đường thẳng AB, vẽ hai tia Ax và By vuông góc với AB tại A và B. Trên đoạn thẳng AB lấy điểm M (khác A, B). Trên tia Ax, lấy điểm C (khác A, CA < CM), tia vuông góc với MC tại M cắt By tại D.

a)  Chứng minh rằng:DAMC đồng dạng với DBMD.

b)  Đường thẳng CD cắt AB tại E. Chứng minh rằng: EA.BD = ED.AC

c)  Vẽ MH vuông góc với CD tại H. Chứng minh:HM2 = HC.HD

d)  Gọi I là giao điểm của BC và AD. Chứng minh: DE.IA = ID.EC

Câu 2. Cho DABC có ba góc nhọn, AB < AC , đường cao AH và trung tuyến AD. Kẻ DE, DF lần lượt vuông góc với AB, AC tại E, F. Chứng minh:

a)   DABH DDBE

b)    AC.DF = AH.DC

c)   DE = AC

DF     AB

Câu 3. Cho D ABC vuông tại A có AB = 8cm, AC = 6cm.

a)  Vẽ đường cao AH. Chứng minh: D ABC       D HBA.

b)  Qua C vẽ đường thẳng song song với AB và cắt AH tại D. Chứng minh: D AHB           D DHC.

c)  Chứng minh : AC2 = AB. DC

d)  Tứ giác ABDC là hình gì? Vì sao? Tính diện tích của tứ giác ABDC.

Câu 4. Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm và hai đường chéo cắt nhau tại O. Qua B kẻ đường thẳng a vuông góc với BD, a cắt DC kéo dài tại E.

a)  Chứng minh: DBCE DDBE.

b)  Tính tỉ số SBCE,SDBE

c)  Kẻ đường cao CF của DBCE . Chứng minh :AC. EF = EB. CF

Câu 5. Cho tam giác ABC vuông tại A có AH là đường cao(H ΠBC ) .

a)  Chứng minhD AHB ∽DCHA .

b)  Trên tia đối của tia AC lấy điểm D, vẽ AE vuông góc với BD tại E.Chứng minh D AEB ∽D DAB .

c)  Chứng minh.BD = BH.BC .
d)  Chứng minh BHE = BDC .

0
1 tháng 9 2019

x O y A B C M t H
a) Phần thuận:

Vì \(AOBC\)là hình chữ nhật ; M là giao điểm của 2 đường chéo AB và OC

\(\Rightarrow MA=MO\)

Mà \(O;A\)cố định

\(\Rightarrow M\)thuộc đường trung trực của OA.

Vẽ đường trung trực của OA và cắt Ox tại H.

*) Giới hạn: Khi B tiến dần tới O thì M tiến dần tới H.

Nhưng \(B\ne O\)( để tạo thành hình chữ nhật \(AOBC\))

\(\Rightarrow M\ne H\)

Vậy quỹ tích điểm M thuộc tia Ht ( trừ điểm H )

b) Phần đảo :

Lấy M thuộc tia Ht\(\left(M\ne H\right)\)

Tia AM cắt Oy tại B.

Vẽ hình chữ nhật AOBC. Ta phải chứng minh M là giao điểm của 2 đường chéo.

Thật vậy,

Xét tam giác OAB có \(HM//OB\)( Vì cùng vuông góc với Ox )

                \(HA=HO\)( vì Ht là đương trung trực )

\(\Rightarrow M\)là trung điểm của AB.

Mà AOBC là hình chữ nhật

\(\Rightarrow M\)là trung điểm của OC.

\(\Rightarrow M\)là giao điểm của 2 đường chéo.

c) Kết luận: Qũy tích điểm M là tia Ht, trừ điểm H ( Ht thuộc đường trung trực của  OA )