Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do tứ giác ABMM’ là hình bình hành nên B A → = M M ' → là. Từ đó suy ra M' là ảnh của M qua phép tịnh tiến theo vectơ B A → .Từ đó suy ra tập hợp các điểm M' là đường tròn (C') , ảnh của C qua phép tịnh tiến theo vectơ BA→.
Vậy khi M di chuyển trên đường tròn (O; R) thì N di chuyển trên đường tròn (O’ ; R) là ảnh của (O ; R) qua phép tịnh tiến theo
Vì không đổi, nên có thể xem N là ảnh của M qua phép tịnh tiến theo . Do đó khi M chạy trên đường tròn (O) thì N chạy trên đường tròn (O') là ảnh của (O) qua phép tịnh tiến theo
Vì không đổi, nên có thể xem N là ảnh của M qua phép tịnh tiến theo . Do đó khi M chạy trên đường tròn (O) thì N chạy trên đường tròn (O') là ảnh của (O) qua phép tịnh tiến theo
a)
⇒ (α) ∩ (ABC) = MN và MN // AB
Ta có N ∈ (BCD) và
Nên ⇒ (α) ∩ (BCD) = NP và NP // CD
Ta có P ∈ (ABD)
Và nên ⇒ (α) ∩ (ABD) = PQ và PQ // AB
nên ⇒ (α) ∩ (ACD) = MQ và MQ // CD
Do đó MN // PQ và NP // MQ, Vậy tứ giác MNPQ là hình bình hành.
b) Ta có: MP ∩ NQ = O. Gọi I là trung điểm của CD.
Trong tam giác ACD có : MQ // CD ⇒ AI cắt MQ tại trung điểm E của MQ.
Trong tam giác ACD có : NP // CD ⇒ BI cắt NP tại trung điểm F của NP.
Vì MNPQ là hình bình hành nên ta có
EF // MN ⇒ EF // AB
Trong ΔABI ta có EF // AB suy ra : IO cắt AB tại trung điểm J
⇒ I, O, J thẳng hàng
⇒ O ∈ IJ cố định.
Vì M di động trên đoạn AC nên Ochạy trong đoạn IJ .
Vậy tập hợp các điểm O là đoạn IJ.
Theo tính chất 2 tiếp tuyến cắt nhau ta có \(AC=BC\)
Mặt khác \(OA=OB=R\)
\(\Rightarrow OC\) là trung trực AB hay \(OC\perp AB\)
\(\Rightarrow\Delta AOK\) vuông tại K
\(\Rightarrow\) Tập hợp K là đường tròn (C) đường kính AO cố định
b.
Do H là trực tâm \(\Rightarrow BH\perp AD\Rightarrow BH||AO\) (cùng vuông góc AD)
\(\Rightarrow\widehat{OAK}=\widehat{KBH}\) (so le trong)
Mà \(AK=BK\) (OC là trung trực AB)
\(\Rightarrow\Delta_VOAK=\Delta_VKBH\left(g.c.g\right)\)
\(\Rightarrow OK=KH\) hay K là trung điểm OH
\(\Rightarrow\overrightarrow{OH}=2\overrightarrow{OK}\Rightarrow H\) là ảnh của K qua phép vị tự tâm O tỉ số \(k=2\)
\(\Rightarrow\) Tập hợp H là đường tròn ảnh của (C) qua phép vị tự tâm O tỉ số \(k=2\) (với (C) là đường tròn đã xác định ở câu a)
Do tứ giác ABMM' là hình bình hành nên \(\overrightarrow{BA}=\overrightarrow{MM'}\). Từ đó suy ra M' là ảnh của M qua phép tịnh tiến theo vectơ \(\overrightarrow{BA}\). Từ đó suy ra tập hợp các điểm M' là đường tròn (C'), ảnh của (C) qua phép tịnh tiến theo vectơ \(\overrightarrow{BA}\)