Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Vì BN=AC mà AC=AM'
=> BN=AM' (tính chất bắc cầu)
vì BN=AM', AB=AB
=>AN=BM'
Vì BN'=BC mà BC=AM
=>BN'=AM
Vì BN'=AM, AB=AB
=>AN'=BM
Vì BN=AC ,AM=BC
=>MC=NC
b) mình chịu
a) +) Xét \(\Delta\)AM'B và \(\Delta\)BNA có;
^M'AB = ^NBA = 90o
AB chung
AM' = BN ( = AC)
=> \(\Delta\)AM'B = \(\Delta\)BNA
=> AN = BM'
+) Vì AM' = ABN ; AM = BN' ( = BC )
=> AM = BN'
^MAB = ^N'BA = 90o
=> \(\Delta\)AMB = \(\Delta\)BN'A
=> AN' = BM
+) Xét \(\Delta\)AMC và \(\Delta\)BCN có:
AM = BC
BN = AC
^MAC = ^CBN ( = 90o )
=> \(\Delta\)AMC = \(\Delta\)BCN
=> MC = NC
b) \(\Delta\)AM'B = \(\Delta\)BNA ( chứng minh ở a)
=> ^M'BA = ^NAB mà hai góc này ở vị trí so le trong
=> AN // BM'
\(\Delta\)AMB = \(\Delta\)BN'A
=> ^MBA = ^N'AB mà hai góc này ở vị trí so le trong
=> MB // AN'
c) Gọi O là trung điểm của AB
Xét \(\Delta\)OAM và \(\Delta\)OBN' có:
OA = OB
^OAM = ^OBN'
AM = BN'
=> \(\Delta\)OAM = \(\Delta\)OBN' => ^AOM = ^BON' mà ^AOM + ^MOB = 180o => ^BON' + ^MOB = 180o => MON' = 180o
=> M; O; N' thẳng hàng (1)
Tương tự chứng minh được:
\(\Delta\)OAM' = \(\Delta\)OBN
=> M'; O; N thẳng hàng (2)
Từ (1); (2) => MN' và M'N cắt nhau tại điểm O là trung điểm của AB
Xét 2 tam giác vuông MAC và CBN có: AM=BC ; AC=BN
=> 2 tam giác bằng nhau ( 2 cgv) => MC=CN
Ta có: Ax // By ( cùng vuông góc với AB) => AM' // BN.
Mà AM'=BN => AM'BN là hình bình hành => AN=BM'
Ta có: Ax // By ( cùng vuông góc với AB) => AM // BN'.
Mà AM=BN' => AMBN' là hình bình hành => AN’ = BM .
Vì AM'BN là hình bình hành (cmt) => AN // BM’
AMBN' là hình bình hành(cmt)=>AN’ // BM
b/ Vì AM'BN là hình bình hành (cmt) =>M'N cắt AB tại trung điểm AB
AMBN' là hình bình hành(cmt)=> MN' cắt AB tại trung điểm AB khi đó M'N cắt MN' tại trung điểm AB.
Câu hỏi của kakemuiki - Toán lớp 7 - Học toán với OnlineMath
Câu hỏi của kakemuiki - Toán lớp 7 - Học toán với OnlineMath
AM _I_ AB
N'B _I_ AB
=> AM // N'B
+) Xét tam giác MAC và tam giác CBN có:
MA = CB (gt)
MAC = CBN (= 900)
AC = BN (gt)
=> Tam giác MAC = Tam giác CBN (c.g.c)
=> MC = NC (2 cạnh tương ứng)
+) Xét tam giác M'AB và tam giác NBA có:
M'A = NB (= AC)
M'AB = NBA (= 900)
AB chung
=> Tam giác M'AB = Tam giác NBA (c.g.c)
=> M'B = NA (2 cạnh tương ứng)
+) Xét tam giác MAB và tam giác N'BA có:
MA = N'B (= BC)
MAB = N'BA (= 900)
AB chung
=> Tam giác MAB = Tam giác N'BA (c.g.c)
=> MB = N'A (2 cạnh tương ứng)
+) M'BA = NAB (Tam giác M'AB = Tam giác NBA)
mà 2 góc này ở vị trí so le trong
=> M'B // NA
+) MBA = N'AB (Tam giác MAB = Tam giác N'BA)
mà 2 góc này ở vị trí so le trong
=> MB // N'A
+) Gọi I là giao điểm của MN' và AB
Xét tam giác AMI và tam giác BN'I có:
IAM = IBN' (= 900)
AM = BN' (= BC)
AMI = BN'I (2 góc so le trong, AM // BN')
=> Tam giác AMI và Tam giác BN'I (c.g.c)
=> AI = BI (2 cạnh tương ứng)
=> I là trung điểm của AB (1)
+) Gọi K là giao điểm của M'N và AB
Xét tam giác AKM' và tam giác BKN có:
KAM' = KBN (= 900)
AM' = BN (= BC)
AM'K = BNK (2 góc so le trong, AM' // BN)
=> Tam giác AKM' = Tam giác BKN (c.g.c)
=> AK = BK (2 cạnh tương ứng)
=> K là trung điểm của AB (2)
+) Từ (1) và (2)
=> \(I\equiv K\)
=> MN', M'N và AB đồng quy tại trung điểm của AB
dài :V