Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 , vì M là trung điểm của AB nên
AM=BM=8:2=4(cm)
ta có:BD+MD=BM
\(\Rightarrow\)3+MD=4
\(\Rightarrow\)MD=1(cm)
ta có:AC+MC=AM
\(\Rightarrow\)3+CM=4
\(\Rightarrow\)CM=1(cm)
mà CD=CM+MD=1+1=2(cm)
b,vì CM+MD=CD:2
\(\Rightarrow\)suy ra M là trung điểmCD
a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
Do đó: ΔAHB=ΔAHD
Suy ra: AB=AD
a) * Vì tam giác ABC cân tại A nên đường cao đồng thời là đường trung tuyến ( t/c )
=> AM là đường trung tuyến ứng với cạnh BC
=> M là trung điểm của BC => MB = MC = 1/2 BC
b)-Vì tam giác ABC cân nên góc B = góc C
Vì MH vuông góc AB, MJ vuông góc AC nên \(\widehat{MHB}=90^o;\widehat{MKC}=90^o\)
Xét tam giác MHB và tam giác MKC có :
góc MHB = góc MKC ( =90 độ )
MB = MC ( cm ở câu a )
góc B = góc C (cmt )
Suy ra : \(\Delta MHB=\Delta MKC\) ( cạnh huyền - góc nhọn )
=> MH = MK ( cặp cạnh tương ứng )
* Gọi I là giao điểm của AM và HK
Vì tam giác MHB = tam giác MKC ( cmt )
=> BH = CK ( cặp canh t/ư)
Mà AB = AC ( tam giác ABC cân tại A )
=> AB - BH = AC - CK
=> AH = AK
=> Tam giác AHK cân tại A ( d/h )
Vì tam giác ABC cân tại A nên đường cao đồng thời là đường phân giác
=> AM là tia phân giác của góc BAC
Hay AI là tia phân giác của góc BAC
- Vì tam giác AHK cân nên phân giác đồng thời là đường cao, đường trung tuyến (t/c)
=> AI là đường cao đồng thời là trung tuyến của tam giác AHK
=> AM vuông góc HK tại I và I là trung điểm của HK
=> AM là đường trung trực của HK ( d/h )
c ) * Vì MH vuông góc AB tại H, E thuộc MH nên AM vuông góc AB tại H
Mà H là trung điểm EM
=> AB là đường trung trực EM
=> AE = AM ( t/c )
Tương tự : AC là đường trung trực của MF
=> AF = AM (t/c)
Suy ra : AE = AF ( = AM )
=> Tam giác AEF cân tại A ( d/h )
a) Xét \(\Delta AMC\) và \(\Delta BMC\), có:
\(MA=MB\) (vì M là trung điểm của AB)
\(\widehat{BMC}=\widehat{AMC}\left(=90^o\right)\)
\(MC\) là cạnh chung
\(\Rightarrow\Delta AMC=\Delta BMC\left(c-g-c\right)\)
b) Ta có: AM = BH (gt)
và AM = BM (vì M là trung điểm của AB)
\(\Rightarrow MH=MK\)
Xét \(\Delta CKM\) và \(\Delta CHM\), có:
MH = MK (cmt)
\(\widehat{CMK}=\widehat{CMH}\left(=90^o\right)\)
MC là cạnh chung
\(\Rightarrow\Delta CKM=\Delta CHK\) (c - g - c)
\(\Rightarrow CH=CK\left(đpcm\right)\)
Học tốt