Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
- Xét tam giác EDC có :
+ PE = PD (GT)
+ NE = NC (GT)
=> PN là đường trung bình của tam giác EDC => \(PN=\frac{1}{2}CD\) (1)
-Xét tam giác EAC có:
+ NE = NC (GT )
+ ME = MA (GT )
=> NM là đường trung bình của tam giác EAC => \(MN=\frac{1}{2}AC\) (2)
- Xét tam giác EAD có :
+ ME = MA (GT)
+ PE =PD (GT )
=> MP là đường trung bình của tam giác EAD => \(MP=\frac{1}{2}AD\) (3)
-Từ 1 , 2 , 3 và AD = DC = CA (GT)
=> PN = NM = MP hay tam giác MNP đều
MQ // AC (đường TB của tam giác EAC)
NP // CB (đường TB của tam giác DCB)
=> MQ // NP (vì A, C, B thẳng hàng)
=> MNPQ là hình thang
Gọi L là trung điểm DE.
Ta có LN // CE (1) (đường trung bình của tam giác DCE).
Lại có: LM // DA (2) (đường TB tam giác EAD)
Mà: AD // CE (3) (Vì góc DAC = góc ECB = 60 độ, và 2 góc này đồng vị)
Từ (1), (2) , (3) suy ra M; N; L thẳng hàng
=> MN // AD
Mà MQ // AB (c/m trên)
góc NMQ = góc DAC = 60 độ
Tương tự c/m được góc PQM = 60 độ
=> hình thang MNPQ có 2 góc kề 1 đáy bằng nhau nên là hinh thang cân
a) MAC đều => góc MAC = 60, MBD đều => góc MBD = 60
=> AOB là tam giác cân ( vì có 2 góc ở đáy = nhau )
mà 2 góc ở đáy lại = 60 => tam giác đều
b) AOB đều => 3 cạnh bằng nhau => AB = OB
AB = AM + MB
OB = OD + DB
mà AB = OB, MB = DB
=> AM = OD, mà AM = MC => MC = OD
MD = OC chứng minh tương tự
c) Xét tam giác ABD và tam giác BOC:
AB = BO
góc ABD = góc BOC = 60
BD = OC
=> ABD = BOC ( c.g.c )
=> AD = BC
d) ABD = BOC ( cm câu c ) => góc BAD = góc OBC
Ta có : MC = OD, MD = OC ( cm câu b ) => MCOD là hbh => MC // OD <=> MC // OB => góc MCK = góc OBC
=> góc BAD = góc MCK
Vì AD = BC, AI = 1/2 AD, CK = 1/2 BC => AI = CK
Xét tam giác MAI và tam giác MCK:
MA = MC
góc BAD = góc MCK
AI = CK
=> MAI = MCK ( c.g.c ) => MI = MK
e) góc CEA = góc BED (đối đỉnh)
Xét tam giác BED: BED + EDB + EBD = 180
Xét tam giác ABD: BAD + ABD + ADB = 180 <=> BAD + ADB = 120
mà có góc EBD = góc BAD ( vì tam giác ABD = tam giác BOC )
=> EDB + EBD = 120 => BED = 60 => CEA = 60
MQ // AC (đường TB của tam giác EAC)
NP // CB (đường TB của tam giác DCB)
=> MQ // NP (vì A, C, B thẳng hàng)
=> MNPQ là hình thang
Gọi L là trung điểm DE.
Ta có LN // CE (1) (đường trung bình của tam giác DCE).
Lại có: LM // DA (2) (đường TB tam giác EAD)
Mà: AD // CE (3) (Vì góc DAC = góc ECB = 60 độ, và 2 góc này đồng vị)
Từ (1), (2) , (3) suy ra M; N; L thẳng hàng
=> MN // AD
Mà MQ // AB (c/m trên)
góc NMQ = góc DAC = 60 độ
Tương tự c/m được góc PQM = 60 độ
=> hình thang MNPQ có 2 góc kề 1 đáy bằng nhau nên là hinh thang cân
Hơi dài đấy
1) Vì P là trung điểm của DE ; N là trung điểm của EC => PN là đường trung bình của tam giác EDC
=> \(PN=\frac{1}{2}DC\)(1)
Vì M là trung điểm của AE ; N là trung điểm của EC => MN là đường trung bình của tam giác AEC
=> \(MN=\frac{1}{2}AC\) (2)
Vì P là trung điểm của DE ; M là trung điểm của AE => PM là đường trung bình của tam giác ADE
=> \(PM=\frac{1}{2}AD\)(3)
Mà \(\frac{1}{2}AD=\frac{1}{2}DC=\frac{1}{2}AC\) Nên từ (1) ; (2) \(\Rightarrow MN=NP=MP\) Hay tam MNP đều (đpcm)
2) Đang nghĩ