K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

a) gọi 3 cạnh của tam giác lần lượt là a;b;c ta có

 \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và a+b+c =60 

 áp dụng tích chất của dãy tỉ số bằng nhau ta có

  \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{60}{12}=5\)

\(\frac{a}{3}=5=>a=15\)

\(\frac{b}{4}=5=>b=20\)

\(\frac{c}{5}=5=>c=25\)

26 tháng 2 2017

a, Gọi 3 cạnh của tam giác lần lượt là x, y, t

Ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{t}{5}\)và \(x+y+t=60\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{t}{5}=\frac{x+y+t}{3+4+5}=\frac{60}{2}=5\)

\(\frac{x}{3}=5\Rightarrow a=15\)

\(\frac{y}{4}=5\Rightarrow a=20\)

\(\frac{t}{5}=5\Rightarrow a=25\)

Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

18 tháng 2 2016

Tam giác đó là tam giác vuông vì theo định lí Py- ta- go đảo

172= 289

152+ 82= 289

Suy ra tam giác đó là tam giác vuông.

18 tháng 2 2016

đây là tam giác vuông vì( nha bn)

vì \(^{17^2}=15^2+8^2\)

16 tháng 6 2017

3 tháng 4 2020

a.Tam giác ABC vuông tại A \(\Rightarrow AB^2+AC^2=BC^2\)\(\Rightarrow5^2+12^2=BC^2\Rightarrow169=BC^2\Rightarrow BC=13\left(cm\right)\)
b. Tam giác MNP là tam giác vuông vì \(6^2+8^2=10^2\)
Chúc bạn học tốt!

Bài 2: Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.Tính độ dài đoạn BC.Bài 3: Bộ ba độ dài cho sau có thể là độ dài ba cạnh của một tam giác vuông không? Vì sao?a) 5cm, 12cm, 9cm                                     b) 12 cm, 16 cm, 20 cmBài 4: Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh  AC, điểm E thuộc cạnh AB sao cho AD = AE.a)     Chứng minh: ΔABD = ΔACE. Bài 5: Cho ∆ABC vuông tại A. Tia phân giác của góc B cắt AC tại D,...
Đọc tiếp

Bài 2: Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.Tính độ dài đoạn BC.

Bài 3: Bộ ba độ dài cho sau có thể là độ dài ba cạnh của một tam giác vuông không? Vì sao?

a) 5cm, 12cm, 9cm                                     b) 12 cm, 16 cm, 20 cm

Bài 4: Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh  AC, điểm E thuộc cạnh AB sao cho AD = AE.

a)     Chứng minh: ΔABD = ΔACE.

 

Bài 5: Cho ∆ABC vuông tại A. Tia phân giác của góc B cắt AC tại D, DN⊥BC tại N.

a)     Chứng minh ∆DBA = ∆DBN. So sánh DA và DN.

b)    Gọi M là giao điểm của hai đường thẳng ND và BA. Chứng minh AM = NC

c)     Chứng minh ∆BMC cân.

 

Bài 10: Cho ΔABC vuông tại A, M là trung điểm của BC

a)     Cho biết BC = 10cm, AC = 6cm. Tính độ dài đoạn thẳng AB.

b)    Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh rằng ΔMAC = ΔMBD

c)     Chứng minh AB // CD.                                   

d)    Chứng minh:

Bài 11: Cho tam giác ABC có BA < BC và

a)Trên BC lấy điểm M sao cho BM = BA. Chứng minh tam giác ABM đều.

b)Tia phân giác góc B cắt AC tại D. Chứng minh: ΔBAD = ΔBMD.

c)Tia MD cắt tia BA tại H, chứng minh ΔDHC cân.

Bài 12 : Cho tam giác ABC cân tại A, trên cạnh AB và AC lần lượt lấy hai điểm E và D sao cho AD = AE, BD cắt CE tại G. Chứng minh rằng:

a) BD = CE.                                                        

b) Tam giác GDE cân.

c) Gọi M là trung điểm của BC. Chứng minh ba điểm A, G, M thẳng hàng.

d) Cho AB = 8 cm; MB = 5 cm. Tính độ dài AM?

0