Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔNMA và ΔNPB có
NM=NP
\(\widehat{NMA}=\widehat{NPB}\)
MA=PB
Do đó: ΔNMA=ΔNPB
Suy ra: NA=NB
hay ΔNAB cân tại N
b: Xét ΔNHM vuông tại H và ΔNKP vuông tại K có
NM=NP
\(\widehat{HNM}=\widehat{KNP}\)
Do đó: ΔNHM=ΔNKP
Suy ra: MH=PK
a) C/m MH là phân giác góc IMK.
-Xét tam giác MNP có AH là đường cao, vừa là đường phân giác.
tức MH là phân giác góc NMP
hay Mh là phân giác IMK.
( Cách 2 :
Xét hai tam giác vuông MNH và MPH, có:
góc MNH = góc MPH ( tam giác MNP cân)
MN= MP ( tam giác MNP cân)
=> hai tam giác bằng nhau ( cạnh huyền - góc nhọn)
=> NMH =PMH
hay MH là phân giác IMK.)
b) IK // NP
mà NP vuông MH
=> IK vuông góc MH.
ta có tam giác vuông MOI = tam giác vuông MOK (c.g.c)
=> OI=OK
Vậy MH là trung trực IK
c)
Chứng minh tam giác OIH = tam giác EHN
=> HNE =IHO
ta có
OIH + OHI =90 độ
<=> OIH + HNE =90 độ
Suy ra IKN = 90 độ
Vậy tam giác IKN vuông tại K.
a) Xét ΔMNH và ΔMPH có
MN=MP(ΔMNP cân tại M)
\(\widehat{NMH}=\widehat{PMH}\)(MH là tia phân giác của \(\widehat{NMP}\))
MH chung
Do đó: ΔMNH=ΔMPH(c-g-c)
hình bạn tự vẽ nha
a)Xét tam giác ACM và tam giác HCM có
góc MAC = góc MHC(=90 độ)
Góc HCM= góc ACM(giả thiết)
Cạnh MC chung
=>Tam giác ACM=tam giác HCM
=>MA=MH (2 cạnh tương ứng)(đpcm)
b) Xét tam giác HMB và tam giác AMI có
góc BMH = góc MAI(=90 độ)
MA=MH(thao phần a)
góc BMH= góc AMI(đối đỉnh)
=>tam giác HMB=tam giác AMI
=>MB=MI(2 cạnh tương ứng)
do đó tam giác MIB cân tại M
+) vì tam giác ACM = tam giác HCM(thao phần a)
=>CA=CH(2 cạnh tương ứng)(1)
ví tam gaics HMB=tam giác AMI(chứng minh trên)
=>HB=AI(2 cạnh tương ứng)(2)
Từ (1) và (2) =>
CA+AI=CH+HB
hay CI=CB
Do đó tam giác ICB cân tại C
a)Xét tam giác AMC và HMC
có góc MAC=MHC (=90 độ)
MC chung
góc ACM= HCM
=> tam giác AMC=HMC (ch-gn)
=> MA=MH
b) Xét tam giác AMI và HMB có
có góc MAI=MHB
AM=MH(cmt)
góc AMI=HMB
=> tam giác AMI = HMB
=> MI=MB => tam giác IMB cân
Xét tam giác BIC có AH vuông góc BC; BA vuông góc IC
có AB và IH cắt nhau tại M => M là trực tâm của tam giác BIC
=> CM là đường cao đồng thời là đường phân giác của tam giác BIC => tam giác BIC cân
phần a) Có tam giác NMP cân tại N(gt)
suy ra NM=NP
góc M=góc P
Có: góc NMP+góc NMA=180độ(2 góc kề bù)
góc NPM+ góc NPB=180độ(2 góc kề bù)
mà góc NMP=góc NPM
suy ra gócNMA=gócNPB
Xét tam giác NAM và tam giác NBP có:
NM=NP(cmt)
góc NMA=góc NPB(cmt)
MA=PB(gt)
suy ra tam giác NAM= tam giác NBP(TH c-g-c)
suy ra:góc NAM=góc NBP(2 góc tương úng)
suy ra tam giác NAB cân
phần b) Xét tam giác AHM và tam giác BKP có:
góc AHM=góc BKP(=90 ĐỘ)
AM=PB(gt)
gócA=gócB(cmt)
suy ra tam giácAHM=tam giác BKP(cạnh huyền-góc nhọn)
suy ra MH=PK(2 góc tương ứng)
Hình cậu tự vẽ nha nhớ k cho tớ đấy chúc hok tốt!
a, Vì tam giác NMP cân tại N <=> NM = NP ; góc M = góc P
mà A = M1 ( 2 góc đồng vị )
B = P1 ( 2 góc đồng vị )
và M = N ( gt )
=> A = B ( 2 góc tương ứng )
vì A = B ( cmt ) => Tam giác NAB cân
phần a) Có tam giác NMP cân tại N(gt)
suy ra NM=NP
góc M=góc P
Có: góc NMP+góc NMA=180độ(2 góc kề bù)
góc NPM+ góc NPB=180độ(2 góc kề bù)
mà góc NMP=góc NPM
suy ra gócNMA=gócNPB
Xét tam giác NAM và tam giác NBP có:
NM=NP(cmt)
góc NMA=góc NPB(cmt)
MA=PB(gt)
suy ra tam giác NAM= tam giác NBP(TH c-g-c)
suy ra:góc NAM=góc NBP(2 góc tương úng)
suy ra tam giác NAB cân
phần b) Xét tam giác AHM và tam giác BKP có:
góc AHM=góc BKP(=90 ĐỘ)
AM=PB(gt)
gócA=gócB(cmt)
suy ra tam giácAHM=tam giác BKP(cạnh huyền-góc nhọn)
suy ra MH=PK(2 góc tương ứng)
Hình cậu tự vẽ nha nhớ k cho tớ đấy chúc hok tốt!
a: Xét ΔMHN vuông tại H và ΔMHP vuông tại H có
MN=MP
MH chung
=>ΔMHN=ΔMHP
b: ΔMNP cân tại M
mà MH là đường cao
nên MH là phân giác