Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kẻ đường cao AH có: \(\frac{OA'}{AA'}=\frac{S_{BOC}}{S_{ABC}}\), ta có:
\(\frac{OB'}{BB'}=\frac{S_{AOC}}{S_{ABC}}\)
\(\frac{OC'}{CC'}=\frac{S_{AOB}}{S_{ABC}}\)
\(\Rightarrow\frac{OA'}{AA'}+\frac{OB'}{BB'}+\frac{OC'}{CC'}=\frac{S_{BOC}+S_{AOC}+S_{AOB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\) (đpcm)
Nguồn: HiệU NguyễN
Kẻ OM vuông góc với BC, kẻ AI vuông góc với BC
\(\Rightarrow\)OM//AI
Xét tam giác AA'I có OM//AI(cmt)
\(\Rightarrow\)\(\frac{OM}{AI}=\frac{OA'}{AA'}\)(Theo hệ quả Ta-lét)
\(\Rightarrow\)\(\frac{OA'}{AA'}=\frac{\frac{1}{2}.OM.BC}{\frac{1}{2}.AI.BC}=\frac{S_{BDC}}{S_{ABC}}\)
Tương tự, ta có \(\frac{DB'}{BB'}=\frac{S_{ADC}}{S_{ABC}}\)
\(\frac{DC'}{CC'}=\frac{S_{ADB}}{S_{ABC}}\)
nên \(\Rightarrow\)đ/cm