K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

mọi người zải câu này nhanh nhanh zùm mk vs

19 tháng 12 2017

Câu hỏi của Mafia - Toán lớp 9 - Học toán với OnlineMath

Em có thể tham khảo tại đây nhé.

a: Xét tứ giác OHDC có

góc OHD+góc OCD=180 độ

=>OHDC là tứ giác nội tiếp

b: Xét ΔOIA vuông tạiI và ΔOHD vuông tại H có

góc IOA chung

=>ΔOIA đồng dạng với ΔOHD

=>OI/OH=OA/OD

=>OI*OD=OH*OA

14 tháng 5 2018

O A B D C I H M d

1) Do DB và DC là 2 tiếp tuyến của (O) => ^DBO=^DCO=900 

=> Tứ giác DBOC nội tiếp đường tròn (Tâm là trung điểm OD) (1)

Xét tứ giác DHOC: ^DHO=^DCO=900 

=> Tứ giác DHOC nội tiếp đường tròn (Tâm là trung điểm DO) (2)

Từ (1) và (2) => 5 điểm D,H,B,O,C cùng nằm trên 1 đường tròn (đpcm)

DB và DC là 2 tiếp tuyến của (O) => DB=DC => D thuộc trung trực của BC

Mà BC là dây cung của (O) nên O cũng thuộc trung trực của BC  

=> OD \(\perp\)BC (tại I) => ^DIA=900

Xét tứ giác DIHA: ^DHA=^DIA=900 (cmt) => Tứ giác DIHA nội tiếp đường tròn (đpcm).

2) Dễ chứng minh \(\Delta\)OBI ~ \(\Delta\)ODB (g.g) => \(\frac{OB}{OD}=\frac{OI}{OB}\Rightarrow OB^2=OI.OD\)

Mà OB=OM (cùng nằm trên (O)) => \(OM^2=OI.OD\)(3)

Hoàn toàn c/m được \(\Delta\)OHD ~ \(\Delta\)OIA  (g.g) => \(\frac{OH}{OI}=\frac{OD}{OA}\Rightarrow OH.OA=OI.OD\)(4)

Từ (3) và (4) => \(OM^2=OH.OA\)=> \(\frac{OM}{OA}=\frac{OH}{OM}\)

Xét \(\Delta\)OHM và \(\Delta\)OMA: \(\frac{OM}{OA}=\frac{OH}{OM}\); ^MOA chung => \(\Delta\)OHM ~ \(\Delta\)OMA (c.g.c)

=> ^OHM=^OMA. Ta có ^OHM=900 => ^OMA=900 => AM là tiếp tuyến của (O) (đpcm).

3) Ta có 5 điểm B,H,D,O,C cùng thuộc 1 đường tròn (cmt)

Suy ra Tứ giác BHOC và tứ giác DHOC nội tiếp đường tròn

Tứ giác BHOC nội tiếp đg tròn => ^ABH=^COH (Cùng bù ^HBC)

Dễ thấy ^BAH=^HDO (Cùng phụ ^DOA) (5)

Do tứ giác DHOC nôi tiếp đg tròn => ^HDO=^OCH (6)

Từ (5); (6) => ^BAH=^OCH

Xét \(\Delta\)AHB và \(\Delta\)CHO: ^ABH=^COH; ^BAH=^OCH => \(\Delta\)AHB ~ \(\Delta\)CHO (g,g)

\(\Rightarrow\)\(\frac{HB}{HO}=\frac{AH}{HC}\Rightarrow HB.HC=AH.HO\)(7)

Nhận thấy Đường tròn (O) có tiếp tuyến AM cố định (Do A cố định) 

Mà MH\(\perp\)AO tại H => H cố định => AH và HO có giá trị không đổi 

Nên AH.HO không đổi (8)

Từ (7) và (8) => HB.HC không đổi khi d quay quanh A (đpcm).

 Bài 1: Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B,C là hai tiếp điểm). Kẻ cát tuyến ADE vs đường tròn (O) (D nằm giữa A và E).a) cm: A,B,O,C cùng thuộc một đường tròn.b) cm: OA vuông BC tại H và OD2 = OH.OA. Từ đó suy ra tam giác OHD đồng dạng vs tam giác ODA.c) cm: BC trùng với tia phân giác của góc DHE.d) Từ D kẻ đường thẳng song song với BE, đường...
Đọc tiếp

 Bài 1: Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B,C là hai tiếp điểm). Kẻ cát tuyến ADE vs đường tròn (O) (D nằm giữa A và E).

a) cm: A,B,O,C cùng thuộc một đường tròn.

b) cm: OA vuông BC tại H và OD= OH.OA. Từ đó suy ra tam giác OHD đồng dạng vs tam giác ODA.

c) cm: BC trùng với tia phân giác của góc DHE.

d) Từ D kẻ đường thẳng song song với BE, đường thẳng này cắt AB, AC lần lượt tại M và N. cm: D là trung điểm MN.

Bài 2: Cho đường tròn tâm O bán kính R, dây BC khác đường kính. Hai tiếp tuyến của đường tròn (O,R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc vs CD tại H.

a) cm: A,B,O,C cùng thuoojcj một đường tròn. Xác định tâm và bán kính của đường tròn đó.

b) cm: AO vuông góc vs BC. Cho biết R=15cm, BC=24cm. Tính AB, OA.

c) cm: BC là tia phân giác của góc ABH.

d) Gọi I là giao điểm của AD và BH, E là giao điểm của BD và AC. cm: IH=IB.

0
Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0