Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét \(\left(O\right)\) có
OI là một phần đường kính
BC là dây
OI\(\perp\)BC tại I
Do đó: I là trung điểm của BC
Xét tứ giác OBAC có
I là trung điểm của đường chéo BC
I là trung điểm của đường chéo AO
Do đó: OBAC là hình bình hành
mà OB=OC
nên OBAC là hình thoi
a: Xét tứ giác ABOC có
H là trung điểm của OA
H là trung điểm của BC
Do đó: ABOC là hình bình hành
mà OA=OB
nên ABOC là hình thoi
a: Gọi H là trung điểm của OA
Xét (O) có
OH là một phần đường kính
BC là dây
OH⊥BC tại H
Do đó: H là trung điểm của BC
Xét tứ giác ABOC có
H là trung điểm của đường chéo AO
H là trung điểm của đường chéo BC
Do đó: ABOC là hình bình hành
mà OB=OC
nên ABOC là hình thoi
a: Xét (O) có
OH là một phần đường kính
CD là dây
OH\(\perp\)CD tại H
Do đó: H là trung điểm của CD
Xét ΔACD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔACD cân tại A
a) Xét tam giác cân OBC có OK là đường cao nên đồng thời là phân giác.
Vậy thì ^ BOA = ^ COA Suy ra ΔABO=ΔACO(c−g−c)⇒ ^ ACO = ^ ABO =90o
Vậy nên AC là tiếp tuyến của đường tròn (O)
bó tay. com k mk nha!!!