K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017

1). Gọi AD cắt (O) tại P khác A

Ta có P C M ^ = P A C ^  (góc tạo bởi tiếp tuyến và dây cung)  = P E M ^ (góc đồng vị do E M ∥ A C );

Suy ra tứ giác ECMP nội tiếp. Từ đó suy ra   M P C ^ = M E C ^ = E C A ^ = C A P ^ ⇒ PM  tiếp xúc (O)

Tương tự PN tiếp xúc (O), suy ra MN tiếp xúc (O) tại P.

18 tháng 2 2018

2) Theo 1). dễ thấy Δ B F A ∽ Δ B N P ⇒ Δ B N F ∽ Δ B P A ⇒ B N B P = F N A P (1).

Tương tự Δ C M E ∽ Δ C P A ⇒ C M C P = E M A P  (2).

Từ (1) và (2), ta có B N C M ⋅ C P B P = F N E M và theo giả thiết F N E M = B N C M , suy ra   C P = B P ⇒ A D là phân giác góc B A C ^ .

23 tháng 5 2019

Tớ không vẽ hình được bạn tự vẽ nhé

a, Vì K thuộc đường tròn đường kính AB

=> AKB=90

Mà CHA=90

=> tứ giác AKNH nội tiếp

Vậy tứ giác AKNH nội tiếp

b,Vì 2 tiếp tuyến cắt nhau tại M 

nên \(OM\perp AC\)

=>\(OM//CB\)

=> tam giác AMO đồng dạng tam giác HCB

=> ĐPCM

c, Tứ giác AMKI nội tiếp do AIM=AKM=90

KIC=AMK

MÀ AMK=KNC do AM song song CH

=> KIC=KNC

=> tứ giác KINC nội tiếp 

=>KNI=KCI

Mà  KCI=KBA

=> KNI=KBA

=> IN song song AB

Vậy IN song song AB

Mình không viết kí hiệu góc nên bạn thông cảm

7 tháng 5 2018

1). Gọi S điểm đối xứng với P qua M.Theo tính chất đối xứng của hình thang cân dễ thấy tứ giác ABSP cũng là hình thang cân.

Ta lại có    Q P S ^ = Q A B ^ = Q R B ^  .

Từ đó có E P Q ^ = E R P ^ ⇒ Δ E R P ∽ Δ E P Q  (g – g),

nên E Q P ^ = E P R ^ = B P S ^ = A S E ^ , suy ra tứ giác AEQS nội tiếp.

Do đó P A . P Q = P E . P S = P F 2 .2 P M = P F . P M , suy ra tứ giác A M Q F  nội tiếp.

Từ đó suy ra đường tròn ngoại tiếp tam giác △ A Q F  luôn đi qua M.

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

\(\text{a) Xét tứ giác BEFC có:}\)

\(\text{∠BEC = 90 o (CE là đường cao)}\)

\(\text{∠BFC = 90 ^0 (BF là đường cao)}\)

=> 2 đỉnh E, F cùng nhìn cạnh BC dưới 1 góc vuông

=> Tứ giác BEFC là tứ giác nội tiếp

\(\text{Xét tứ giác AEHF có:}\)

\(\text{∠AEH = 90 o (CE là đường cao)}\)

\(\text{∠AFH = 90 o (BF là đường cao)}\)

=> ∠AEH + ∠AFH = 180^ o

=> Tứ giác AEHF là tứ giác nội tiếp.

\(\text{b) Xét ΔSBE và ΔSFC có:}\)

\(\text{∠FSC là góc chung}\)

\(\text{∠SEB = ∠SCF (Tứ giác BEFC là tứ giác nội tiếp)}\)

=> ΔSBE ∼ ΔSFC (g.g)

\(\Rightarrow\frac{SB}{SF}\)=\(\frac{SE}{SC}\)\(\Rightarrow\text{SE.SF = SB.SC (1)}\)

\(\text{Xét ΔSMC và ΔSNB có:}\)

\(\text{∠ NSC là góc chung}\)

\(\text{∠ SCM = ∠SNB (Hai góc nội tiếp cùng chắn cung MB)}\)

=> ΔSMC ∼ ΔSBN (g.g)

\(\Rightarrow\frac{SM}{SB}\)=\(\frac{SC}{SN}\Rightarrow\text{SM.SN = SB.SC (2)}\)

Từ (1) và (2) => SE.SF = SM.SN

\(\text{c) Ta có:}\)

\(\hept{\begin{cases}\widehat{KAE}=\widehat{KCB}\left(\text{2 GÓC NỘI TIẾP CÙNG CHẮN CUNG KB}\right)\\\widehat{HAE}=\widehat{BFM}\left(\text{TỨ GIÁC AEHF LÀ TỨ GIÁC NỘI TIẾP}\right)\\\widehat{KCB}=\widehat{BFM}\left(\text{TỨ GIÁC BEFC LÀ TỨ GIÁC NỘI TIẾP}\right)\end{cases}}\)

=> ∠KAE = ∠HAE

=> AE là tia phân giác của góc ∠KAH

\(\text{Mà AE cũng là đường cao của tam giác KAH}\)

=> ΔKAH cân tại A

=> AE là đường trung tuyến của ΔKAH

=> E là trung điểm của KH hay K và H đối xứng nhau qua AB

\(\text{d) Tia BF cắt đường tròn (O) tại J}\)

∠KJB = ∠KCB (2 góc nội tiếp cùng chắn cung KB)

∠KCB = ∠EFH (tứ giác BEFC là tứ giác nội tiếp )

=> ∠KJB = ∠EFH

Mà 2 góc này ở vị trí so le trong

=> KJ // EF

KI // EF (gt)

=> I ≡ J

=> H, F, J thẳng hàng

HÌNH THÌ VÀO XEM THỐNG KÊ HỎI ĐÁP NHA

BÀI LÀM ĐÚNG MÀ SAO CÓ NGƯỜI K SAI TÔI ĐẢM BẢO BÀI NÀY ĐÚNG 100%

26 tháng 9 2018

2). Vì EA là tiếp xúc (O) và từ kết quả câu 1) ta có E A 2 = E R . E Q = E P 2 .

Từ đó có  E A = E P ⇒ D A P ^ = E A P ^ − E A D ^ = A P E ^ − A C D ^ = P A C ^

Do đó AP  là phân giác D A C ^ ⇒ Q C = Q D ⇒ Q M ⊥ C D

3 tháng 5 2019

1). Tam giác ABF và tam giác ACE ần lượt cân tại F, E 

F B A ^ = E C A ^ = A ^ 2 ⇒ Δ A B F ∽ Δ A C E .

2). Giả sử G là giao điểm của BE  CF.

Ta có  G F G C = B F C E = A B A C = D B D C ⇒ G D ∥ F B   , và  F B ∥ A D  ta có  G ∈ A D .

3). Chứng minh  B Q G ^ = Q G A ^ = G A E ^ = G A C ^ + C A E ^ = G A B ^ + B A F ^ = G A F ^ , nên AGQF nội tiếp, và Q P G ^ = G C E ^ = G F Q ^ , suy ra tứ giác FQGP nội tiếp.

24 tháng 9 2019

A B C O I M N P Q L K J

Đặt bán kính của (I) và (O) lần lượt là \(r\) và \(R\).Gọi AI cắt (O) tại K khác A, KO cắt PQ, (O) lần lượt tại J,L.

Dễ thấy K là điểm chính giữa cung PQ và BC, suy ra KP = KQ, cũng dễ có KM = KN  (1)

Áp dụng ĐL Cosin vào \(\Delta\)AKN ta có: 

\(KN^2=AK^2+AN^2-2AK.AN.\cos45^0\Rightarrow KN^2=2R^2+2Rr+r^2\) (2)

Ta thấy OJ có độ dài bằng một nửa đường cao AH của \(\Delta\)ABC. Từ ĐL Ptolemy và Thales ta tính được:

\(AH=r.\frac{AB+AC+2R}{2R}=\frac{2Rr+r^2}{R}\Rightarrow OJ=\frac{2Rr+r^2}{2R}\)

Áp dụng hệ thức lượng tam giác vuông có:

\(KQ^2=KJ.KL=\left(R+\frac{2Rr+r^2}{2R}\right).2R=2R^2+2Rr+r^2\)  (3)

Từ (1),(2) và (3) suy ra KM = KN = KP = KQ. Điều đó có nghĩa là M,N,P,Q cùng thuộc đường tròn tâm K (đpcm).