K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2019

:vvvvvv sai đề, làm mãi ko ra, \(S_{BMP}=S_2\) mới đúng nha, thiếu đỉnh B 

a) Kẻ các đường cao NN1, CC1 tương ứng với AB (N1, C1 thuộc AB) 

\(\Delta ACC_1\) có \(NN_1//CC_1\) ( do cùng vuông góc với AB ) \(\Rightarrow\)\(\frac{NN_1}{CC_1}=\frac{AN}{AC}\) ( hệ quả định lí Ta-let ) 

Có: \(\frac{S_1}{S}=\frac{\frac{1}{2}NN_1.AP}{\frac{1}{2}CC_1.AB}=\frac{NN_1}{CC_1}.\frac{AP}{AB}=\frac{AN.AP}{AC.AB}\) ( đpcm ) 

b) Tương tự câu a, kẻ các đường cao MM2, MM3 tương ứng với AB và AC (M2 thuộc AB, M3 thuộc AC) 

\(\Delta BCC_1\) có \(MM_2//CC_1\) ( cùng vuông góc với AB ) \(\Rightarrow\)\(\frac{MM_2}{CC_1}=\frac{BM}{BC}\) ( hệ quả Ta-let ) 

\(\frac{S_2}{S}=\frac{\frac{1}{2}MM_2.BP}{\frac{1}{2}CC_1.AB}=\frac{MM_2}{CC_1}.\frac{BP}{AB}=\frac{BM.BP}{BC.AB}\) (1) 

Tiếp tục kẻ các đường cao MM3, BB1 tương ứng với AC ( M3, B1 thuộc AC ) 

\(\Delta BB_1C\) có \(MM_3//BB_1\) ( cùng vuông góc với AC ) \(\Rightarrow\)\(\frac{MM_3}{BB_1}=\frac{CM}{BC}\)

\(\frac{S_3}{S}=\frac{\frac{1}{2}MM_3.CN}{\frac{1}{2}BB_1.AC}=\frac{MM_3}{BB_1}.\frac{CN}{AC}=\frac{CM.CN}{BC.AC}\) (2) 

Từ (1), (2) và kết luận câu a) ta suy ra \(\hept{\begin{cases}S_1=\frac{AN.AP}{AC.AB}S\\S_2=\frac{BM.BP}{BC.AB}S\\S_3=\frac{CM.CN}{BC.AC}S\end{cases}}\)

\(\Rightarrow\)\(S_1.S_2.S_3=\frac{AN.AP}{AC.AB}.\frac{BM.BP}{BC.AB}.\frac{CM.CN}{BC.AC}S^3\) ( nhân 3 vế ba đẳng thức trên ) 

\(\Leftrightarrow\)\(S_1.S_2.S_3=\frac{AP.BP}{AB^2}.\frac{AN.CN}{AC^2}.\frac{BM.CM}{BC^2}S^3\)

Mà \(\hept{\begin{cases}AP.BP=\left(\sqrt{AP.BP}\right)^2\le\left(\frac{AP+BP}{2}\right)^2=\left(\frac{AB}{2}\right)^2=\frac{AB^2}{4}\\AN.CN=\left(\sqrt{AN.CN}\right)^2\le\left(\frac{AN+CN}{2}\right)^2=\left(\frac{AC}{2}\right)^2=\frac{AC^2}{4}\\BM.CM=\left(\sqrt{BM.CM}\right)^2\le\left(\frac{BM+CM}{2}\right)^2=\left(\frac{BC}{2}\right)^2=\frac{BC^2}{4}\end{cases}}\)

\(\Rightarrow\)\(S_1.S_2.S_3\le\frac{\frac{AB^2}{4}}{AB^2}.\frac{\frac{AC^2}{4}}{AC^2}.\frac{\frac{BC^2}{4}}{BC^2}S^3=\frac{1}{64}S^3\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}AP=BP\\AN=CN\\BM=CM\end{cases}}\) hay M, N, P lần lượt là trung điểm của BC, AC, AB 

26 tháng 9 2018

A B C H E F O

a) \(\Delta\)ABC vuông tại A có trung tuyến AO nên ^OAC = ^OCA. Do ^OCA = ^BAH (Cùng phụ ^HAC)

Nên ^OAC = ^BAH = ^ AEF (Do tứ giác AEHF là hcn)

Mà ^AEF + ^AFE = 900 => ^OAC + ^AFE = 900 => OA vuông góc EF (đpcm).

b) Biến đổi tương đương:

\(BE\sqrt{CH}+CF\sqrt{BH}=AH\sqrt{BC}\)

\(\Leftrightarrow BE\sqrt{BC.CH}+CF\sqrt{BC.BH}=AB.BC\)(Nhân mỗi vế với \(\sqrt{BC}\))

\(\Leftrightarrow BE\sqrt{AC^2}+CF\sqrt{AB^2}=AB.BC\) (Hệ thức lương)

\(\Leftrightarrow BE.AC+CF.AB=AB.BC\)

\(\Leftrightarrow BH.AH+CH.AH=AB.BC\)(Vì \(\Delta\)EBH ~ \(\Delta\)HAC; \(\Delta\)FHC ~ \(\Delta\)HBA)

\(\Leftrightarrow AH\left(BH+CH\right)=AB.BC\)

\(\Leftrightarrow AH.BC=AB.AC\) (luôn đúng theo hệ thức lượng)

Vậy có ĐPCM.

24 tháng 7 2018

Bạn tự vẽ hình nha.

❏Áp dụng hệ thức lượng vào \(\Delta vAHB\) , ta có:

\(BH^2=BE\cdot AB\Rightarrow BH^4=BE^2\cdot AB^2\)

\(\Rightarrow BE^2=\dfrac{BH^4}{AB^2}\left(1\right)\)

Áp dụng hệ thức lượng vào \(\Delta vABC\) , ta có:

\(AB^2=BH\cdot BC\left(2\right)\)

Thay (2) vào (1) ta được: \(BE^2=\dfrac{BH^4}{BH\cdot BC}=\dfrac{BH^3}{BC}\left(đpcm\right)\)

24 tháng 7 2018

b) Tương tự câu a: \(HC^4=CF^2\cdot AC^2\Rightarrow CF^2=\dfrac{HC^4}{AC^2}=\dfrac{HC^4}{HC\cdot BC}=\dfrac{HC^3}{BC}\)

Ta có: \(BC=2a\)

\(\Rightarrow\sqrt[3]{BE^2}+\sqrt[3]{CF^2}=\sqrt[3]{\dfrac{BH^3}{BC}}+\sqrt[3]{\dfrac{HC^3}{BC}}=\sqrt[3]{\dfrac{1}{BC}}\cdot\left(BH+HC\right)\)

\(\Rightarrow\sqrt[3]{BE^2}+\sqrt[3]{CF^2}=\sqrt[3]{\dfrac{1}{2a}}\cdot a=\sqrt[3]{\dfrac{a^2}{2}}\)

23 tháng 7 2018

I don't now

...............

.................

.

23 tháng 7 2018

You have a mistake.

12 tháng 10 2017

Câu 2:

A B C M K H

Từ B, kẻ đường thẳng vuông góc với BC cắt AC tại M.

Từ giả thiết, ta có:

\(\cdot\) AH // BM (do cùng _I_ BC)

\(\cdot\) H là trung điểm của BC (\(\Delta ABC\) cân tại A có AH là đường cao)

Suy ra AH là đường trung bình của \(\Delta BMC\)

\(\Rightarrow BM=2AH\)

Xét \(\Delta BMC\) vuông tại B có BK là đường cao

\(\Rightarrow\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{BM^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\) (đpcm)

12 tháng 10 2017

Câu 1:

A B C H E F

Xét \(\Delta ABC\) vuông tại A có AH là đường cao

\(\Rightarrow AB^2=BH\times BC\)

Xét \(\Delta HBA\) vuông tại H có HE là đường cao

\(\Rightarrow BH^2=BE\times AB\)

\(\Rightarrow BE^2=\dfrac{BH^4}{AB^2}=\dfrac{BH^4}{BH\times BC}=\dfrac{BH^3}{BC}\)

Chứng minh tương tự, ta có: \(CF^2=\dfrac{CH^3}{BC}\)

Suy ra \(\sqrt[3]{BE^2}+\sqrt[3]{CF^2}=\dfrac{BH}{\sqrt[3]{BC}}+\dfrac{CH}{\sqrt[3]{BC}}=\dfrac{BH+CH}{\sqrt[3]{a}}=\dfrac{a}{\sqrt[3]{a}}=\left(\sqrt[3]{a}\right)^2\)