K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2017

Ta có:

\(\left\{{}\begin{matrix}AD=AE\\\widehat{DAK}=\widehat{EAI}\\AK=AI\end{matrix}\right.\)

\(\Rightarrow\Delta DAK=\Delta EAI\)

\(\Rightarrow DK=EI\)

\(\Rightarrow KE+KD=KE+EI\ge KI\left(1\right)\)

Gọi AH là đường cao của tam giác ABC với H thuộc BC.

\(\Rightarrow AH^2+HB^2=AB^2\)

\(\Leftrightarrow AB^2=2AH^2\left(2\right)\)

Ta lại có \(\Delta KAI\) vuông tại A (cái này đễ thấy nha)

\(\Rightarrow AK^2+AI^2=KI^2\)

\(\Leftrightarrow KI^2=2AK^2\left(3\right)\)

Từ (2) và (3) ta suy ra được:

\(AB^2=2AH^2\le2AK^2=KI^2\)

\(\Leftrightarrow AB\le KI\left(4\right)\)

Từ (1) và (4) ta có: \(KE+KD\ge AB\)

15 tháng 12 2017

ê of rồi à  t làm ở đây luôn nhé

15 tháng 12 2017

a b c d e k i h

Có ; AD+DB=AB

Để ; EK+DK ≥AB thì EK>AD ; DK <DB

có;ED>AD (vì A=90 độ)

có DK<DB (vì B =45 độ )

có ED//CK ( vì EA=ED) -> EDK>EKD ->EK>ED>AD

-> KE+KD ≥AB

21 tháng 1 2020

Hình vẽ bạn tự vẽ nha

Trước hết chứng minh :(tự chứng minh lun)

Cho tam giác ABC vuông cân tại A . Chứng minh \(\sqrt{2}\cdot AB=BC\)(*)

Xét tam giác KDM và tam giác IEM ta có:

KM=MI (gt) 

KMD= IME (gt);

MD=ME (gt);

=>  tam giác KDM = tam giác IEM (c.g.c);

=> KD= EI (tương ứng);

Lại có NMP=90 (gt) => NMK+ KMP=90

=> IME+ KMP =90 => IMK =90  mà KM=MI 

=> tam giác KMI vuông cân tại M

Xét tam giác NMP vuông cân tại M có MNH=45 mà MHN=90 (do MH là đường cao)

=>Tam giác MHN vuông cân tại H 

Áp dụng (*) vào  tam giác KMI vuông cân tại M và tam giác MHN vuông cân tại H ta được:

\(\hept{\begin{cases}\sqrt{2}\cdot MH=MN\\\sqrt{2}\cdot KM=KI\end{cases}}\)mà \(KM\ge MH\)

\(\Rightarrow KI\ge MN\)

Xét 3 điểm K,E,I ta có:

\(KE+EI\ge KI\)

hay \(KE+KD\ge MN\)

21 tháng 1 2020

Hoàng Nguyễn Văn Dòng thứ 5 dưới lên sai rồi mem,tự coi lại nha,không thể như thế được đâu.Tại sao \(KM\ge MH\) lại suy ra \(KI\ge MN\) được ??

18 tháng 1 2018

làm ơn giúp với mình đang cần gấp

2 tháng 2 2018

chịu nhé