K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2021

a: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=CM

Xét ΔMAC có MA=MC

nên ΔMAC cân tại M

Suy ra: \(\widehat{MAC}=\widehat{BCA}\)

hay \(\widehat{BAH}=\widehat{MAC}\)

16 tháng 6 2019

a) Nếu \(AM\perp DE\) thì ADME là hình vuông, suy ra AD = AE

Suy ra AB = AC

Áp dụng định lí Pytago vào hai tam giác vuông ABH và ACH, ta thấy AB < AC

Vậy KHÔNG thể chứng minh được :|

22 tháng 3 2020

A H B C D E M K

A, - Xét tam giác ABC có AM là trung tuyến ứng với cạnh huyền .

=> \(AM=\frac{1}{2}BC=CM=BM\)

- Xét tam giác CMA có : \(AM=CM\)

=> Tam giác CMA cân tại M .

=> \(\widehat{MAC}=\widehat{MCA}\) ( tính chất tam giác cân )

Ta lại có : \(\widehat{MCA}+\widehat{CBA}=90^o\)\(\widehat{HAB}+\widehat{CBA}=90^o\)

=> \(\widehat{MCA}=\widehat{HAB}\)

=> \(\widehat{MAC}=\widehat{HAC}\) ( đpcm )

b, - Áp dụng hệ thức lượng vào tam giác ACH vuông tại H , HE vuông góc với AC có :

\(AH^2=AE.AC\)

- Áp dụng hệ thức lượng vào tam giác ABH vuông tại H , HD vuông góc với AB có :

\(AH^2=AB.AD\)

=> \(AE.AC=AB.AD\left(=AH^2\right)\)

=> \(\frac{AE}{AB}=\frac{AD}{AC}\)

- Xét \(\Delta AED\)\(\Delta ABC\) có :

\(\left\{{}\begin{matrix}\frac{AE}{AB}=\frac{AD}{AC}\left(cmt\right)\\\widehat{BAC}=90^o\end{matrix}\right.\)

=> \(\Delta AED\) ~ \(\Delta ABC\) ( c - g - c )

=> \(\widehat{AED}=\widehat{ABC}\) ( góc tương ứng )

\(\widehat{ABC}+\widehat{ACB}=90^o\)

=> \(\widehat{AED}+\widehat{ACB}=90^o\)

\(\widehat{MAC}=\widehat{MCA}\) ( cmt câu a )

=> \(\widehat{MAC}+\widehat{AED}=90^o\)

Ta lại có : \(\widehat{MAC}+\widehat{AED}+\widehat{EIA}=180^o\)

=> \(\widehat{EIA}=90^o\)

Vậy AM vuông góc với ED tại K .

15 tháng 12 2019

mình định chụp rồi gửi cho bạn mà ko được

26 tháng 8 2019

Mn vào tcn của con này, https://olm.vn/thanhvien/kimmai123az, PTD/KM ?, nó chuyên đi copy bài của ng khác và câu hỏi tương tự

1 tháng 1 2018

undefined