Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAFH vuông tại F và ΔADB vuông tại D có
góc FAH chung
Do đó: ΔAFH đồng dạng với ΔADB
b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
Do đo: ΔHFB đồng dạng với ΔHEC
Suy ra: HF/HE=HB/HC
hay \(HF\cdot HC=HB\cdot HE\)
c: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
Do đo: ΔAEB đồng dạng với ΔAFC
Suy ra: AE/AF=AB/AC
hay AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
Do đó: ΔAEF đồng dạg với ΔABC
a: Xét ΔAFH vuông tại F và ΔADB vuông tại D có
góc FAH chung
Do đó: ΔAFH đồng dạng với ΔADB
b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
Do đo: ΔHFB đồng dạng với ΔHEC
Suy ra: HF/HE=HB/HC
hay \(HF\cdot HC=HB\cdot HE\)
c: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
Do đo: ΔAEB đồng dạng với ΔAFC
Suy ra: AE/AF=AB/AC
hay AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
Do đó: ΔAEF đồng dạg với ΔABC
Bài 1)
a) Tứ giác AIHK có 3 góc vuông \(\widehat{HKA}=\widehat{HIA}=\widehat{KAI}=90^0\)
Nên suy ra góc còn lại cũng vuông.Tứ giác có 4 góc vuông là hình chữ nhật
b) Câu này không đúng rồi bạn
Nếu thực sự hai tam giác kia đồng dạng thì đầu bài phải cho ABC vuông cân
Vì nếu góc AKI = góc ABC = 45 độ ( IK là đường chéo đồng thời là tia phân giác của hình chữ nhật)
c) Ta có : Theo hệ thức lượng trong tam giác ABC vuông
\(AB^2=BC.BH=13.4\)
\(\Rightarrow AB=2\sqrt{13}\)
\(AC=\sqrt{9\cdot13}=3\sqrt{13}\)
Vậy \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{6\cdot13}{2}=39\left(cm^2\right)\)
Bài 2)
a) \(ED=AD-AE=17-8=9\)
Xét tỉ lệ giữa hai cạnh góc vuông trong hai tam giác ABE và DEC ta thấy
\(\frac{AB}{AE}=\frac{ED}{DC}\Leftrightarrow\frac{6}{8}=\frac{9}{12}=\frac{3}{4}\)
Vậy \(\Delta ABE~\Delta DEC\)
b) \(\frac{S_{ABE}}{S_{DEC}}=\frac{AB\cdot AE\cdot\frac{1}{2}}{DE\cdot DC\cdot\frac{1}{2}}=\frac{6\cdot8}{9\cdot12}=\frac{4}{9}\)
c) Kẻ BK vuông góc DC.Suy ra tứ giác ABKD là hình chữ nhật vì có 4 góc vuông
Nên BK = AD và AB = DK
\(\Rightarrow KC=DC-DK=12-6=6\)
Theo định lý Pytago ta có
\(BC=\sqrt{BK^2+KC^2}=\sqrt{17^2+6^2}=5\sqrt{13}\)
Bạn tự vẽ hình nhé^^
a) xét tam giác HDC và tam giác HEB có:
góc E= góc D(=90 độ)
góc EHB = góc DHC(2 góc đối đỉnh)
=> tam giác HDC đồng dạng tam giác HEB(g-g)
=>HD/HE = HC/HB=> HD.HB=HE.HC(đpcm)
b)Xét tam giác ADB vuông tại D và tam giác AEC Vuông tại E có:
góc A: góc chung
=> tam giác ADB đồng dạng tam giác AEC (g-g)
=>AD/AE=AB/AC
Xét tam giác AED và tam giác ACB có:
góc A: góc chung
AD/AE=AB/AC (cmt)
=> tam giác AED đồng dạng tam giác ACB(c-g-c)
=>góc ADE=góc ABC (đpcm)
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
chung
Do đó: ΔABDΔACE(g-g)
b) Xét ΔHEB vuông tại E và ΔHDC vuông tại D có
(hai góc đối đỉnh)
Do đó: ΔHEBΔHDC(g-g)
Suy ra:
hay
Xét ∆HAF và ∆HCD:
\(\widehat{HFA}=\widehat{HDC}=90^o\)
\(\widehat{AHF}=\widehat{CHD}\) (2 góc đối đỉnh)
=> ∆HAF~∆HCD(g.g)
b) Xét ∆AHB có: M là trung điểm của AH
N là trung điểm của HB
=> MN là đường trung bình của ∆AHB
=>MN//AB và \(MN=\dfrac{1}{2}AB\)
=> \(\widehat{HMN}=\widehat{BAM}\) (2 góc đồng vị)
Tương tự ở ∆AHC ta được: \(MP=\dfrac{1}{2}AC\) và \(\widehat{HMP}=\widehat{CAM}\)
Ta có: \(\widehat{BAC}=\widehat{BAD}+\widehat{CAD}=\widehat{NMH}+\widehat{PMH}=\widehat{NMP}\)
\(\dfrac{MN}{MP}=\dfrac{\dfrac{1}{2}AB}{\dfrac{1}{2}AC}=\dfrac{AB}{AC}\)
Xét ∆MNP và ∆ABC có:
\(\widehat{NMP}=\widehat{BAC}\left(cmt\right)\)
\(\dfrac{MN}{MP}=\dfrac{AB}{AC}\left(cmt\right)\)
=> ∆MNP~∆ABC
Ta có: \(\dfrac{S_{MNP}}{S_{ABC}}=\left(\dfrac{MN}{AB}\right)^2=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
=> \(S_{MNP}=\dfrac{1}{4}S_{ABC}\)