Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xet ΔEDF có EK là phân giác
nên DK/DE=FK/FE
=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1
=>DK=3cm; FK=5cm
b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có
góc DEK=góc HEI
=>ΔDEK đồng dạng với ΔHEI
=>ED/EH=EK/EI
=>ED*EI=EK*EH
c: góc DKI=90 độ-góc KED
góc DIK=góc HIE=90 độ-góc KEF
mà góc KED=góc KEF
nên góc DKI=góc DIK
=>ΔDKI cân tại D
mà DG là trung tuyến
nên DG vuông góc IK
a, tam giác DEF vuông tại D, có đường cao DH
Áp dụng định lí Py ta go ta có :
\(EF^2=ED^2+EF^2=16+36=52\Rightarrow EF=2\sqrt{13}\)cm
Do EK là phân giác \(\Rightarrow\frac{ED}{EF}=\frac{DK}{KF}\)( mà \(FK=DF-DK=6-DK\))
\(\Rightarrow\frac{4}{2\sqrt{13}}=\frac{DK}{6-DK}\Rightarrow24-4DK=2\sqrt{13}DK\)
\(\Leftrightarrow24=6\sqrt{13}DK\Rightarrow DK=4\sqrt{13}\)cm
\(\Rightarrow KF=DF-KD=6-4\sqrt{13}=2\sqrt{13}\)cm
b, Xét tam giác DEK và tam giác HEI ta có :
^DEK = ^HEI ( EK là phân giác )
^EDK = ^EHI = 900
Vậy tam giác DEK ~ tam giác HEI ( g.g )
\(\Rightarrow\frac{DE}{HE}=\frac{EK}{EI}\)( tỉ số đồng dạng ) \(\Rightarrow DE.EI=EK.HE\)