Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trừ 1 ở mỗi phân số ta đuợc :
\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(=\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu : a+b+c+d\(\ne\)0
=> a=b=c=d
=> \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
Nếu a+b+c+d=0
=> +) a+b=-(c+a)
+) b+c=-(d+a)
+) c+d=-(a+b)
+) d+a=-(b+c)
=> M=(-1)+(-1)+(-1)+(-1)=-4
Xem lại đề biểu thức M đi bạn, hình như dấu + chứ không phải dấu = nha
Đặt điều kiện : a, b, c, d khác 0
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
\(=\frac{2a+b+c+d+a+2b+c+d+a+b+2c+d+a+b+c+2d}{a+b+c+d}=\frac{5\left(a+b+c+d\right)}{a+b+c+d}\)
Nếu \(a+b+c+d=0\Rightarrow\hept{\begin{cases}a+b=-\left(c+d\right)\\b+c=-\left(d+a\right)\\c+d=-\left(a+b\right)\end{cases}\Rightarrow d+a=-\left(b+c\right)\Rightarrow M=-4}\)
Và nếu a + b + c + d khác 0 \(\Rightarrow\frac{2a+b+c+d}{a}=5\Rightarrow b+c+d=3a\)
Ta có : \(\hept{\begin{cases}a+b+c=3d\\a+c+d=3b\\a+b+d=3c\end{cases}\Rightarrow a=b=c=d}\)
Khi đó \(M=4\)
Vậy \(\Rightarrow\orbr{\begin{cases}M=4\\M=-4\end{cases}}\)
áp dụng t/ c dãy tỉ số = nhau ta có: \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{5\left(a+b+c+d\right)}{a+b+c+d}=5\)
\(\frac{2a+b+c+d}{a}=5\Rightarrow5a=2a+b+c+d\Leftrightarrow3a=b+c+d\Rightarrow a=\frac{b+c+d}{3}\)
\(\frac{a+2b+c+d}{b}=5\Rightarrow3b=a+c+d\Leftrightarrow3b=\frac{b+c+d}{3}+c+d\Leftrightarrow9b=b+c+d+3c+3d\Leftrightarrow8b=4c+4d\Leftrightarrow b=\frac{c+d}{2}\)
\(\Rightarrow a=\frac{\left(\frac{c+d}{2}+c+d\right)}{3}=\frac{3c+3d}{6}=\frac{c+d}{2}\Rightarrow a+b=\frac{2\left(c+d\right)}{2}=c+d\Rightarrow\frac{2c+2d+c+d}{\frac{c+d}{2}}=5\Leftrightarrow\frac{6\left(c+d\right)}{c+d}=5\Rightarrow6=5\)=> k tìm đc a,b,c,d thỏa mãn.
hoặc làm tiếp ta cũng có thể thấy:
\(\frac{a+b+2c+d}{c}=5\Rightarrow3c=a+b+d\Leftrightarrow3c-\frac{c+d}{2}-\frac{c+d}{2}-d=0\Leftrightarrow3c-c-d+d=0\Leftrightarrow2c=0\Leftrightarrow c=0\)
mà a,b,c,d điều kiện phải khác 0 => k có a,b,c,d thỏa mãn
Ta có : 2a + b + c+ d / a - 1 = a + 2b + c + d / b - 1 = a + b + 2c + d / c - 1 = a + b + c +2d / d - 1
=> a + b + c + d / a = a + b + c + d / b = a + b + c + d / c = a + b + c + d / d
Xét 2 trường hợp :
TH1: a + b + c + d = 0
=> a + b = - ( c + d ) ; b + c = - ( a + d ) ; c + d = - ( a + b )
Khi đó M = ( -1 ) . 4 = -4
TH2 : a + b + c + d khác 0
=> a = b = c = d
Khi đó M = 1 . 4 = 4
Vậy M = 4 hoặc M = - 4
\(\Leftrightarrow\frac{a+b+c+d}{a}+1=\frac{a+b+c+d}{b}+1=\frac{a+b+c+d}{c}+1=\frac{a+b+c+d}{d}+1\)
\(\Leftrightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
=> a =b=c=d
=>M =1+1+1+1 =4
Từ \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
=> \(2+\frac{b+c+d}{a}=2+\frac{a+c+d}{b}=2+\frac{a+b+d}{c}=2+\frac{a+b+c}{d}\)
=> \(\frac{b+c+d}{a}=\frac{a+c+d}{b}=\frac{a+b+d}{c}=\frac{a+b+c}{d}=\frac{\left(b+c+d\right)+\left(a+c+d\right)+\left(a+b+d\right)+\left(a+b+c\right)}{a+b+c+d}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)
Từ \(3=\frac{b+c+d}{a}=\frac{a+c+d}{b}=\frac{\left(a+b\right)+2\left(c+d\right)}{a+b}=1+2.\frac{c+d}{a+b}\)=> \(\frac{c+d}{a+b}=\frac{3-1}{2}=1\)
Từ \(3=\frac{a+b+d}{c}=\frac{a+b+c}{d}=\frac{2.\left(a+b\right)+\left(c+d\right)}{c+d}=1+2.\frac{a+b}{c+d}\) => \(\frac{a+b}{c+d}=1\)
Từ \(3=\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{\left(a+b+c\right)+\left(b+c+d\right)}{d+a}=2.\frac{b+c}{d+a}+1\)=> \(\frac{b+c}{d+a}=1\)
Từ \(3=\frac{a+c+d}{b}=\frac{a+b+d}{c}=\frac{2\left(a+d\right)+\left(b+c\right)}{b+c}=2.\frac{d+a}{b+c}+1\)=> \(\frac{d+a}{b+c}=1\)
Vậy M = 1 + 1+ 1+ 1 = 4